rm_gallery
AccuracyReward
Bases: BasePointWiseReward
Calculate accuracy (exact match rate) between generated content and reference answer.
This reward evaluates if the generated content matches the reference answer exactly. A score of 1.0 indicates an exact match, while 0.0 indicates no match.
Source code in rm_gallery/gallery/rm/general.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
BaseHarmlessnessListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to answer questions, avoiding harmful behaviors such as spreading misinformation, spreading harmful ideas, or engaging in other harmful activities.
Source code in rm_gallery/gallery/rm/alignment/base.py
61 62 63 64 65 66 67 68 69 70 |
|
BaseHarmlessnessPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to answer questions, avoiding harmful behaviors such as spreading misinformation, spreading harmful ideas, or engaging in other harmful activities.
Source code in rm_gallery/gallery/rm/alignment/base.py
97 98 99 100 101 102 103 104 105 106 |
|
BaseHelpfulnessListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to provide helpful and informative responses to users, responding to their queries with relevant and accurate information.
Source code in rm_gallery/gallery/rm/alignment/base.py
49 50 51 52 53 54 55 56 57 58 |
|
BaseHelpfulnessPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to provide helpful and informative responses to users, responding to their queries with relevant and accurate information.
Source code in rm_gallery/gallery/rm/alignment/base.py
85 86 87 88 89 90 91 92 93 94 |
|
BaseHonestyListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to truthfully answer the user’s questions with no bias or prejudice.
Source code in rm_gallery/gallery/rm/alignment/base.py
73 74 75 76 77 78 79 80 81 82 |
|
BaseHonestyPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to truthfully answer the user’s questions with no bias or prejudice.
Source code in rm_gallery/gallery/rm/alignment/base.py
109 110 111 112 113 114 115 116 117 118 |
|
BaseLLMReward
Bases: BaseReward
Base class for LLM-based reward modules.
Provides framework for prompt-based interaction with language models.
Source code in rm_gallery/core/reward/base.py
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
|
format(sample, thread_pool=None, **kwargs)
Process and format the input sample using parallel execution capabilities.
@param sample: Input data sample to be formatted. Accepts either a DataSample instance or a dictionary that can be validated into a DataSample object @param thread_pool: Optional thread pool executor for parallel processing. If None, parallel execution will use a default/single-threaded context @param kwargs: Additional keyword arguments passed to the parallel execution handler and underlying formatting operations
@return: Formatted result from the parallel processing pipeline. Type depends on implementation of _format and _parallel methods
Notes: - When input is a dictionary, automatically converts it to DataSample using model validation - Utilizes internal parallel processing infrastructure for improved throughput - Thread-safe when provided with appropriate thread pool executor
Source code in rm_gallery/core/reward/base.py
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
|
refine(sample, max_iterations=3, llm=None, thread_pool=None, **kwargs)
Refines a given data sample using an LLM (Large Language Model) with a specified maximum number of iterations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
DataSample
|
The input data sample to be refined. |
required |
max_iterations
|
int
|
The maximum number of refinement iterations. Defaults to 3. |
3
|
llm
|
BaseLLM | None
|
The LLM instance to use for refinement. If None, uses the default LLM from the instance. Defaults to None. |
None
|
thread_pool
|
ThreadPoolExecutor | None
|
A thread pool executor for managing concurrent tasks. If None, no thread pool is used. Defaults to None. |
None
|
**kwargs
|
Additional keyword arguments for flexibility. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
DataSample |
DataSample
|
The refined data sample after processing. |
Source code in rm_gallery/core/reward/base.py
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
|
BaseListWisePrincipleReward
Bases: BasePrincipleReward
, BaseListWiseReward
List-wise principle evaluation using LLM.
Compares responses against each other based on ethical principles.
Source code in rm_gallery/core/reward/base.py
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
|
BaseListWiseReward
Bases: BaseReward
List-wise reward module for comparative evaluation of multiple responses.
Evaluates responses as a group to determine relative rankings.
Source code in rm_gallery/core/reward/base.py
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
BasePointWisePrincipleReward
Bases: BasePrincipleReward
, BasePointWiseReward
Point-wise principle evaluation using LLM.
Evaluates each response individually against ethical principles.
Source code in rm_gallery/core/reward/base.py
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
|
BasePointWiseReward
Bases: BaseReward
Point-wise reward module for individual response evaluation.
Evaluates each response independently without considering relative ranking.
Source code in rm_gallery/core/reward/base.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
|
BasePromptTemplate
Bases: BaseModel
BasePromptTemplate serves as the abstract base class for all prompt template implementations.
This class provides core functionality for parsing structured templates, formatting output schemas, and validating content against defined field requirements. It implements the fundamental patterns for bidirectional conversion between string representations and structured data models.
Attributes:
Name | Type | Description |
---|---|---|
reason |
str
|
A field capturing the reasoning trace for decision-making processes |
Source code in rm_gallery/core/reward/template.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
format(enable_thinking=False, **kwargs)
classmethod
Formats provided content into the template's required output structure.
Takes arbitrary keyword arguments and formats them into the appropriate template structure for response generation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
enable_thinking
|
bool
|
Flag to control inclusion of reasoning field |
False
|
**kwargs
|
Content to be formatted into template structure |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Formatted string ready for model processing |
Source code in rm_gallery/core/reward/template.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
parse(text)
classmethod
Converts a structured text string into a validated template instance.
Processes input text through internal parsing mechanism and constructs a model instance with validated field values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
XML-style formatted string containing template data |
required |
Returns:
Name | Type | Description |
---|---|---|
BasePromptTemplate |
BasePromptTemplate
|
Constructed instance with parsed field values |
Source code in rm_gallery/core/reward/template.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
schema(enable_thinking=False, **kwargs)
classmethod
Generates a descriptive schema documentation string for the template structure.
Creates a human-readable documentation showing required fields, their descriptions, and proper output formatting requirements.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
enable_thinking
|
bool
|
Flag to include/exclude thinking field in schema |
False
|
**kwargs
|
Additional parameters passed to schema generation |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Formatted schema documentation string with field descriptions |
Source code in rm_gallery/core/reward/template.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
BrainstormingListWiseReward
Bases: BaseHelpfulnessListWiseReward
Brainstorming: Generating text to come up with new ideas or solutions, with an emphasis on creativity and driving thinking.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/brainstorming.py
20 21 22 23 24 25 26 27 |
|
CARMO
Bases: BaseLLMReward
, BaseListWiseReward
Context-Aware Reward Modeling
Source code in rm_gallery/gallery/rm/carmo.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
ChatListWiseReward
Bases: BaseHelpfulnessListWiseReward
Chat: Simulates human conversation and communicates a variety of topics through text understanding and generation, emphasizing coherence and natural flow of interaction.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/chat.py
22 23 24 25 26 27 28 29 |
|
ClassificationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Classification: Entails assigning predefined categories or labels to text based on its content.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/classification.py
18 19 20 21 22 23 24 25 26 27 |
|
ClosedQAListWiseReward
Bases: BaseHelpfulnessListWiseReward
Closed QA: Search for direct answers to specific questions in given text sources (i.e. given context, given options).
Source code in rm_gallery/gallery/rm/alignment/helpfulness/closed_qa.py
16 17 18 19 20 21 22 23 |
|
CodeExecutionReward
Bases: BasePointWiseReward
Executes code against test cases and evaluates correctness based on test case results.
This reward model evaluates code by executing it against test cases using a testing framework that supports both call-based and standard input code evaluation methods.
Source code in rm_gallery/gallery/rm/code/code.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
|
CodeListWiseReward
Bases: BaseHelpfulnessListWiseReward
Code: Involves generating, understanding, or modifying programming language code within text.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/code.py
15 16 17 18 19 20 21 22 |
|
CodeStyleReward
Bases: BasePointWiseReward
Basic code style checking including indentation consistency and naming conventions.
Source code in rm_gallery/gallery/rm/code/code.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
DataSample
Bases: BaseModel
Complete data sample structure for reward modeling training and evaluation.
Represents a single interaction with input context, multiple possible outputs, and associated metadata for comprehensive reward model training.
Attributes:
Name | Type | Description |
---|---|---|
unique_id |
str
|
Unique identifier for tracking and deduplication |
input |
List[ChatMessage]
|
Conversation context as list of chat messages |
output |
List[DataOutput]
|
List of possible responses with evaluations |
task_category |
Optional[str]
|
Optional categorization for task-specific analysis |
source |
Optional[str]
|
Origin dataset or system that generated this sample |
created_at |
datetime
|
Timestamp for temporal tracking |
metadata |
Optional[Dict]
|
Additional context and debugging information |
Source code in rm_gallery/core/data/schema.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
update(sample)
Merge another sample's data into this sample for combining evaluations.
Updates additional_kwargs and reward details from the source sample while preserving the original structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
DataSample
|
Source sample to merge data from |
required |
Returns:
Type | Description |
---|---|
DataSample
|
Self with updated data for method chaining |
Source code in rm_gallery/core/data/schema.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
DetoxifyReward
Bases: BasePointWiseReward
Detoxify: Detecting different types of of toxicity like threats, obscenity, insults ans so on.
Source code in rm_gallery/gallery/rm/alignment/harmlessness/detoxification.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
F1ScoreReward
Bases: BasePointWiseReward
Calculate F1 score between generated content and reference answer at word level.
This reward computes precision, recall and F1 score by comparing word overlap between generated and reference texts. Uses configurable tokenizer to support multilingual content including Chinese and English.
Source code in rm_gallery/gallery/rm/general.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
FactualityListWiseReward
Bases: BaseHonestyListWiseReward
Factuality: Detects hallucinations and other basic errors in completions.
Source code in rm_gallery/gallery/rm/alignment/honesty/factuality.py
19 20 21 22 23 24 25 26 |
|
FocusListWiseReward
Bases: BaseHelpfulnessListWiseReward
Focus: Detects high-quality, on-topic answers to general user queries
Source code in rm_gallery/gallery/rm/alignment/helpfulness/focus.py
19 20 21 22 23 24 25 26 |
|
GenerationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Generation: Creating new textual content, from articles to stories, with an emphasis on originality and creativity.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/generation.py
21 22 23 24 25 26 27 28 |
|
HelpSteer2PairwiseConverter
Bases: DataConverter
Converter for HelpSteer2 pairwise data format Can handle data from both local files and HuggingFace Hub Converts each data entry into two DataSamples with swapped responses
Source code in rm_gallery/gallery/data/load/helpsteer2_pairwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
convert_to_data_sample(data_dict, source_info)
Convert HelpSteer2 pairwise data to DataSample format
Source code in rm_gallery/gallery/data/load/helpsteer2_pairwise.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
HelpSteer2PointwiseConverter
Bases: DataConverter
Unified converter for HelpSteer2 data format Can handle data from both local files and HuggingFace Hub
Source code in rm_gallery/gallery/data/load/helpsteer2_pointwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
convert_to_data_sample(data_dict, source_info)
Convert HelpSteer2 data to DataSample format
Source code in rm_gallery/gallery/data/load/helpsteer2_pointwise.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
LengthPenaltyReward
Bases: BasePointWiseReward
Text length based penalty for content that is too short or too long.
Source code in rm_gallery/gallery/rm/format/format.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
MathListWiseReward
Bases: BaseHelpfulnessListWiseReward
Math: Solves problems at math, on open-ended human prompts ranging from middle school physics and geometry to college-level chemistry, calculus, combinatorics, and more.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/math.py
18 19 20 21 22 23 24 25 |
|
MathVerifyReward
Bases: BasePointWiseReward
Verifies mathematical expressions using the math_verify library, supporting both LaTeX and plain expressions
Source code in rm_gallery/gallery/rm/math/math.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
NgramRepetitionPenaltyReward
Bases: BasePointWiseReward
Calculate N-gram repetition penalty supporting Chinese processing and multiple penalty strategies.
Source code in rm_gallery/gallery/rm/format/format.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
NumberAccuracyReward
Bases: BasePointWiseReward
Check numerical calculation accuracy by comparing numbers in generated vs reference content.
This reward verifies if the numbers in the generated content match the numbers in the reference content within a specified tolerance.
Source code in rm_gallery/gallery/rm/general.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
OpenQAListWiseReward
Bases: BaseHelpfulnessListWiseReward
Open QA: Search for answers across a wide range of text sources. The challenge is to process large amounts of information and understand complex questions.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/open_qa.py
15 16 17 18 19 20 21 22 |
|
PRMBenchConverter
Bases: DataConverter
Unified converter for Process Reward Model (PRM) data Handles mathematical reasoning data with step-wise processes
Source code in rm_gallery/gallery/data/load/prmbench.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
convert_to_data_sample(data_dict, source_info)
Convert PRM data to DataSample format
Expected input format: { "original_question": "...", "modified_question": "...", "original_process": ["step1", "step2", ...], "modified_process": ["step1", "step2", ...], "modified_steps": [5, 6], "error_steps": [5, 6], "reason": "...", "idx": "...", "question": "...", "classification": "confidence" }
Source code in rm_gallery/gallery/data/load/prmbench.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
PatchSimilarityReward
Bases: BasePointWiseReward
Calculate similarity between generated patch and oracle patch using difflib.SequenceMatcher.
This reward measures how similar the generated patch is to the reference patch, providing a similarity score and detailed diff information.
Source code in rm_gallery/gallery/rm/code/code.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
PreciseIFListWiseReward
Bases: BaseHelpfulnessListWiseReward
Precise Instruction Following : Follows precise instructions, such as ‘Answer without the letter u’.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/precise_if.py
20 21 22 23 24 25 26 27 |
|
PrincipleListWiseTemplate
Bases: BasePromptTemplate
Template implementation for principle-based list-wise evaluation tasks.
Designed for comparative evaluation scenarios where multiple answers need to be assessed against defined principles to determine the optimal choice.
Attributes:
Name | Type | Description |
---|---|---|
best |
int
|
Index of the best-performing answer according to principles |
Source code in rm_gallery/core/reward/template.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|
format(desc, scenario, principles, examples, query, context, answers, **kwargs)
classmethod
Formats comparative evaluation components into structured prompt template.
Combines task description, scenario context, principles, and multiple candidate answers into standardized prompt format for list-wise evaluation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
desc
|
str
|
Task description text |
required |
scenario
|
str
|
Scenario context description |
required |
principles
|
str
|
List of relevant principles |
required |
examples
|
str
|
Example-based guidance |
required |
query
|
str
|
Evaluation query text |
required |
context
|
str
|
Additional contextual information |
required |
answers
|
List[str]
|
List of candidate answers for comparison |
required |
**kwargs
|
Additional formatting parameters |
{}
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Formatted prompt string following template requirements |
Source code in rm_gallery/core/reward/template.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|
parse(text)
classmethod
Parses text input containing list-wise evaluation results.
Converts best answer index from string to integer format during template instantiation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Input string containing XML-style tagged content |
required |
Returns:
Name | Type | Description |
---|---|---|
PrincipleListWiseTemplate |
Constructed instance with parsed values |
Source code in rm_gallery/core/reward/template.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
PrivacyLeakageReward
Bases: BasePointWiseReward
Privacy information leakage detection for emails, phone numbers, ID cards, credit cards, and IP addresses.
This reward checks for potential privacy leaks in the generated content, including email addresses, phone numbers, ID numbers, credit card numbers, and IP addresses. Applies penalties for each detected leak.
Source code in rm_gallery/gallery/rm/format/format.py
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
RMBBenchmarkBestOfNConverter
Bases: DataConverter
Unified converter for conversation data with conversation_input, bon_best and loser_list responses
Source code in rm_gallery/gallery/data/load/rmbbenchmark_bestofn.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rmbbenchmark_bestofn.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
RMBBenchmarkPairwiseConverter
Bases: DataConverter
Unified converter for conversation data with conversation_input, chosen and reject responses
Source code in rm_gallery/gallery/data/load/rmbbenchmark_pairwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rmbbenchmark_pairwise.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
ReasoningFormatReward
Bases: BasePointWiseReward
Check format reward for thinking format and answer format with proper tags.
This reward verifies if the generated content follows the required format
with proper
Source code in rm_gallery/gallery/rm/format/format.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
ReasoningListWiseReward
Bases: BaseHelpfulnessListWiseReward
Reasoning: Involves processing and analyzing text to draw inferences, make predictions, or solve problems, requiring an understanding of underlying concepts and relationships within the text.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/reasoning.py
15 16 17 18 19 20 21 22 |
|
ReasoningToolCallFormatReward
Bases: BasePointWiseReward
Check tool call format including think, answer and tool_call tags with JSON validation.
This reward verifies if the generated content follows the required format
with proper
Source code in rm_gallery/gallery/rm/format/format.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
RewardBench2AnnotationTemplate
Bases: BaseAnnotationTemplate
Reward Bench 2 annotation template implementation for 4-way comparison
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
label_config
property
Return the Label Studio XML configuration for reward bench 2 evaluation (4-way comparison)
process_annotations(annotation_data)
Process annotation data specific to reward bench 2 evaluation (4-way comparison)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Generic annotation data with ratings, choices, text_areas |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Processed data structured for reward bench 2 evaluation |
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
validate_annotation_data(annotation_data)
Validate annotation data for reward bench 2 evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Annotation data to validate |
required |
Returns:
Type | Description |
---|---|
bool
|
True if valid, False otherwise |
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
RewardBench2Converter
Bases: DataConverter
Unified converter for conversation data with prompt, chosen and rejected responses (version 2)
Source code in rm_gallery/gallery/data/load/rewardbench2.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rewardbench2.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
RewardBenchAnnotationTemplate
Bases: BaseAnnotationTemplate
Reward Bench annotation template implementation
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
label_config
property
Return the Label Studio XML configuration for reward bench evaluation
process_annotations(annotation_data)
Process annotation data specific to reward bench evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Generic annotation data with ratings, choices, text_areas |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Processed data structured for reward bench evaluation |
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
validate_annotation_data(annotation_data)
Validate annotation data for reward bench evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Annotation data to validate |
required |
Returns:
Type | Description |
---|---|
bool
|
True if valid, False otherwise |
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
RewardBenchConverter
Bases: DataConverter
Unified converter for conversation data with prompt, chosen and rejected responses
Source code in rm_gallery/gallery/data/load/rewardbench.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rewardbench.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
RewardDimensionWithRank
Bases: RewardDimension
ListWise/Pointwise reward dimension with ranking values.
Attributes:
Name | Type | Description |
---|---|---|
rank |
List[float]
|
Collection of ranking scores for different positions |
Methods:
Name | Description |
---|---|
__getitem__ |
Returns a scored reward dimension for a specific rank position |
Source code in rm_gallery/core/reward/schema.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
__getitem__(index)
Access a specific position's reward information.
:param index: Position in the ranking list to retrieve :type index: int :returns: Reward information with score for the specified position :rtype: RewardDimensionWithScore
Source code in rm_gallery/core/reward/schema.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
RewardDimensionWithScore
Bases: RewardDimension
Pointwise/Stepwise reward dimension with a numerical score.
Attributes:
Name | Type | Description |
---|---|---|
score |
float
|
Numerical value representing the reward magnitude |
Source code in rm_gallery/core/reward/schema.py
20 21 22 23 24 25 26 27 28 |
|
RewardRegistry
A registry management system for reward modules that maps module names to their corresponding implementation classes.
This class provides a centralized repository for registering and retrieving reward modules by string identifiers. Modules can be registered using decorators and later accessed by their string identifiers.
Attributes:
Name | Type | Description |
---|---|---|
_registry |
Dict[str, Type[BaseReward]]
|
Internal dictionary storing the mapping between reward module names and their classes. |
Source code in rm_gallery/core/reward/registry.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
get(name)
classmethod
Retrieve a registered reward module class by its identifier.
Provides safe access to registered modules without raising errors for missing entries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
String identifier of the reward module to retrieve |
required |
Returns:
Type | Description |
---|---|
Type[BaseReward] | None
|
The corresponding BaseReward subclass if found, None otherwise |
Source code in rm_gallery/core/reward/registry.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
list()
classmethod
Returns:
Type | Description |
---|---|
str
|
A list of all registered reward modules |
Source code in rm_gallery/core/reward/registry.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
register(name)
classmethod
Create a decorator to register a reward module class with a specified identifier.
The decorator pattern allows classes to be registered while maintaining their original identity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Unique string identifier for the reward module |
required |
module
|
The BaseReward subclass to be registered |
required |
Returns:
Type | Description |
---|---|
A decorator function that registers the module when applied to a class |
Source code in rm_gallery/core/reward/registry.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
RewardResult
Bases: BaseModel
, Generic[T]
Container for reward calculation results with generic type support.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
Identifier of the reward module that generated this result |
details |
List[T]
|
Collection of detailed reward information items |
extra_data |
dict
|
Additional metadata or context information |
Source code in rm_gallery/core/reward/schema.py
65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
RewriteListWiseReward
Bases: BaseHelpfulnessListWiseReward
Rewrite: the assistant aims to modifies existing text to alter its style while preserving the original information and intent.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/rewrite.py
17 18 19 20 21 22 23 24 |
|
RolePlayingListWiseReward
Bases: BaseHelpfulnessListWiseReward
Role Playing: Entails adopting specific characters or personas within text-based scenarios, engaging in dialogues or actions that reflect the assigned roles.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/role_playing.py
25 26 27 28 29 30 31 32 |
|
RougeReward
Bases: BasePointWiseReward
ROUGE-L similarity evaluation using longest common subsequence
Source code in rm_gallery/gallery/rm/general.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
SafetyListWiseReward
Bases: BaseHarmlessnessListWiseReward
Safety: Comply with or refuse prompts related to harmful use cases as well as general compliance behaviors.
Source code in rm_gallery/gallery/rm/alignment/harmlessness/safety.py
19 20 21 22 23 24 25 26 |
|
SummarizationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Summarization: The text is compressed into a short form, retaining the main information, which is divided into extraction (directly selected from the original text) and production (rewriting the information).
Source code in rm_gallery/gallery/rm/alignment/helpfulness/summarization.py
23 24 25 26 27 28 29 30 31 32 |
|
SyntaxCheckReward
Bases: BasePointWiseReward
Check code syntax using Abstract Syntax Tree to validate Python code blocks.
Source code in rm_gallery/gallery/rm/code/code.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
TranslationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Translation: Converting text from one language to another.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/translation.py
21 22 23 24 25 26 27 28 |
|
get_tokenizer(tokenizer_type='tiktoken', encoding_name='cl100k_base', chinese_only=False, **kwargs)
Factory function to create tokenizer instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer_type
|
str
|
Type of tokenizer ("tiktoken", "jieba", "simple") |
'tiktoken'
|
encoding_name
|
str
|
Tiktoken encoding name (for tiktoken tokenizer) |
'cl100k_base'
|
chinese_only
|
bool
|
Whether to keep only Chinese characters (for jieba tokenizer) |
False
|
**kwargs
|
Additional arguments for tokenizer initialization |
{}
|
Returns:
Name | Type | Description |
---|---|---|
BaseTokenizer |
BaseTokenizer
|
Tokenizer instance |
Raises:
Type | Description |
---|---|
ValueError
|
If tokenizer_type is not supported |
Source code in rm_gallery/core/utils/tokenizer.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|