rm_gallery
BaseHarmlessnessListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to answer questions, avoiding harmful behaviors such as spreading misinformation, spreading harmful ideas, or engaging in other harmful activities.
Source code in rm_gallery/gallery/rm/alignment/base.py
61 62 63 64 65 66 67 68 69 70 |
|
BaseHarmlessnessPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to answer questions, avoiding harmful behaviors such as spreading misinformation, spreading harmful ideas, or engaging in other harmful activities.
Source code in rm_gallery/gallery/rm/alignment/base.py
97 98 99 100 101 102 103 104 105 106 |
|
BaseHelpfulnessListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to provide helpful and informative responses to users, responding to their queries with relevant and accurate information.
Source code in rm_gallery/gallery/rm/alignment/base.py
49 50 51 52 53 54 55 56 57 58 |
|
BaseHelpfulnessPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to provide helpful and informative responses to users, responding to their queries with relevant and accurate information.
Source code in rm_gallery/gallery/rm/alignment/base.py
85 86 87 88 89 90 91 92 93 94 |
|
BaseHonestyListWiseReward
Bases: BaseListWisePrincipleReward
The assistant aims to truthfully answer the user’s questions with no bias or prejudice.
Source code in rm_gallery/gallery/rm/alignment/base.py
73 74 75 76 77 78 79 80 81 82 |
|
BaseHonestyPointWiseReward
Bases: BasePointWisePrincipleReward
The assistant aims to truthfully answer the user’s questions with no bias or prejudice.
Source code in rm_gallery/gallery/rm/alignment/base.py
109 110 111 112 113 114 115 116 117 118 |
|
BaseListWisePrincipleReward
Bases: BasePrincipleReward
, BaseListWiseReward
List-wise principle evaluation using LLM.
Compares responses against each other based on ethical principles.
Source code in rm_gallery/core/reward/base.py
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
|
BasePointWisePrincipleReward
Bases: BasePrincipleReward
, BasePointWiseReward
Point-wise principle evaluation using LLM.
Evaluates each response individually against ethical principles.
Source code in rm_gallery/core/reward/base.py
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
|
BasePointWiseReward
Bases: BaseReward
Point-wise reward module for individual response evaluation.
Evaluates each response independently without considering relative ranking.
Source code in rm_gallery/core/reward/base.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
BrainstormingListWiseReward
Bases: BaseHelpfulnessListWiseReward
Brainstorming: Generating text to come up with new ideas or solutions, with an emphasis on creativity and driving thinking.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/brainstorming.py
20 21 22 23 24 25 26 27 |
|
ChatListWiseReward
Bases: BaseHelpfulnessListWiseReward
Chat: Simulates human conversation and communicates a variety of topics through text understanding and generation, emphasizing coherence and natural flow of interaction.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/chat.py
22 23 24 25 26 27 28 29 |
|
ClassificationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Classification: Entails assigning predefined categories or labels to text based on its content.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/classification.py
18 19 20 21 22 23 24 25 26 27 |
|
ClosedQAListWiseReward
Bases: BaseHelpfulnessListWiseReward
Closed QA: Search for direct answers to specific questions in given text sources (i.e. given context, given options).
Source code in rm_gallery/gallery/rm/alignment/helpfulness/closed_qa.py
16 17 18 19 20 21 22 23 |
|
CodeListWiseReward
Bases: BaseHelpfulnessListWiseReward
Code: Involves generating, understanding, or modifying programming language code within text.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/code.py
15 16 17 18 19 20 21 22 |
|
DataSample
Bases: BaseModel
Complete data sample structure for reward modeling training and evaluation.
Represents a single interaction with input context, multiple possible outputs, and associated metadata for comprehensive reward model training.
Attributes:
Name | Type | Description |
---|---|---|
unique_id |
str
|
Unique identifier for tracking and deduplication |
input |
List[ChatMessage]
|
Conversation context as list of chat messages |
output |
List[DataOutput]
|
List of possible responses with evaluations |
task_category |
Optional[str]
|
Optional categorization for task-specific analysis |
source |
Optional[str]
|
Origin dataset or system that generated this sample |
created_at |
datetime
|
Timestamp for temporal tracking |
metadata |
Optional[Dict]
|
Additional context and debugging information |
Source code in rm_gallery/core/data/schema.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
update(sample)
Merge another sample's data into this sample for combining evaluations.
Updates additional_kwargs and reward details from the source sample while preserving the original structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
DataSample
|
Source sample to merge data from |
required |
Returns:
Type | Description |
---|---|
DataSample
|
Self with updated data for method chaining |
Source code in rm_gallery/core/data/schema.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
DetoxifyReward
Bases: BasePointWiseReward
Detoxify: Detecting different types of of toxicity like threats, obscenity, insults ans so on.
Source code in rm_gallery/gallery/rm/alignment/harmlessness/detoxification.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
FactualityListWiseReward
Bases: BaseHonestyListWiseReward
Factuality: Detects hallucinations and other basic errors in completions.
Source code in rm_gallery/gallery/rm/alignment/honesty/factuality.py
19 20 21 22 23 24 25 26 |
|
FocusListWiseReward
Bases: BaseHelpfulnessListWiseReward
Focus: Detects high-quality, on-topic answers to general user queries
Source code in rm_gallery/gallery/rm/alignment/helpfulness/focus.py
19 20 21 22 23 24 25 26 |
|
GenerationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Generation: Creating new textual content, from articles to stories, with an emphasis on originality and creativity.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/generation.py
21 22 23 24 25 26 27 28 |
|
HelpSteer2PairwiseConverter
Bases: DataConverter
Converter for HelpSteer2 pairwise data format Can handle data from both local files and HuggingFace Hub Converts each data entry into two DataSamples with swapped responses
Source code in rm_gallery/gallery/data/load/helpsteer2_pairwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
convert_to_data_sample(data_dict, source_info)
Convert HelpSteer2 pairwise data to DataSample format
Source code in rm_gallery/gallery/data/load/helpsteer2_pairwise.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
HelpSteer2PointwiseConverter
Bases: DataConverter
Unified converter for HelpSteer2 data format Can handle data from both local files and HuggingFace Hub
Source code in rm_gallery/gallery/data/load/helpsteer2_pointwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
convert_to_data_sample(data_dict, source_info)
Convert HelpSteer2 data to DataSample format
Source code in rm_gallery/gallery/data/load/helpsteer2_pointwise.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
LengthPenaltyReward
Bases: BasePointWiseReward
Text length based penalty for content that is too short or too long.
Source code in rm_gallery/gallery/rm/format/format.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
MathListWiseReward
Bases: BaseHelpfulnessListWiseReward
Math: Solves problems at math, on open-ended human prompts ranging from middle school physics and geometry to college-level chemistry, calculus, combinatorics, and more.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/math.py
18 19 20 21 22 23 24 25 |
|
NgramRepetitionPenaltyReward
Bases: BasePointWiseReward
Calculate N-gram repetition penalty supporting Chinese processing and multiple penalty strategies.
Source code in rm_gallery/gallery/rm/format/format.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
OpenQAListWiseReward
Bases: BaseHelpfulnessListWiseReward
Open QA: Search for answers across a wide range of text sources. The challenge is to process large amounts of information and understand complex questions.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/open_qa.py
15 16 17 18 19 20 21 22 |
|
PRMBenchConverter
Bases: DataConverter
Unified converter for Process Reward Model (PRM) data Handles mathematical reasoning data with step-wise processes
Source code in rm_gallery/gallery/data/load/prmbench.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
convert_to_data_sample(data_dict, source_info)
Convert PRM data to DataSample format
Expected input format: { "original_question": "...", "modified_question": "...", "original_process": ["step1", "step2", ...], "modified_process": ["step1", "step2", ...], "modified_steps": [5, 6], "error_steps": [5, 6], "reason": "...", "idx": "...", "question": "...", "classification": "confidence" }
Source code in rm_gallery/gallery/data/load/prmbench.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
PreciseIFListWiseReward
Bases: BaseHelpfulnessListWiseReward
Precise Instruction Following : Follows precise instructions, such as ‘Answer without the letter u’.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/precise_if.py
20 21 22 23 24 25 26 27 |
|
PrivacyLeakageReward
Bases: BasePointWiseReward
Privacy information leakage detection for emails, phone numbers, ID cards, credit cards, and IP addresses.
This reward checks for potential privacy leaks in the generated content, including email addresses, phone numbers, ID numbers, credit card numbers, and IP addresses. Applies penalties for each detected leak.
Source code in rm_gallery/gallery/rm/format/format.py
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
RMBBenchmarkBestOfNConverter
Bases: DataConverter
Unified converter for conversation data with conversation_input, bon_best and loser_list responses
Source code in rm_gallery/gallery/data/load/rmbbenchmark_bestofn.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rmbbenchmark_bestofn.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
RMBBenchmarkPairwiseConverter
Bases: DataConverter
Unified converter for conversation data with conversation_input, chosen and reject responses
Source code in rm_gallery/gallery/data/load/rmbbenchmark_pairwise.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rmbbenchmark_pairwise.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
ReasoningFormatReward
Bases: BasePointWiseReward
Check format reward for thinking format and answer format with proper tags.
This reward verifies if the generated content follows the required format
with proper
Source code in rm_gallery/gallery/rm/format/format.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
ReasoningListWiseReward
Bases: BaseHelpfulnessListWiseReward
Reasoning: Involves processing and analyzing text to draw inferences, make predictions, or solve problems, requiring an understanding of underlying concepts and relationships within the text.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/reasoning.py
15 16 17 18 19 20 21 22 |
|
ReasoningToolCallFormatReward
Bases: BasePointWiseReward
Check tool call format including think, answer and tool_call tags with JSON validation.
This reward verifies if the generated content follows the required format
with proper
Source code in rm_gallery/gallery/rm/format/format.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
RewardBench2AnnotationTemplate
Bases: BaseAnnotationTemplate
Reward Bench 2 annotation template implementation for 4-way comparison
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
label_config
property
Return the Label Studio XML configuration for reward bench 2 evaluation (4-way comparison)
process_annotations(annotation_data)
Process annotation data specific to reward bench 2 evaluation (4-way comparison)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Generic annotation data with ratings, choices, text_areas |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Processed data structured for reward bench 2 evaluation |
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
validate_annotation_data(annotation_data)
Validate annotation data for reward bench 2 evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Annotation data to validate |
required |
Returns:
Type | Description |
---|---|
bool
|
True if valid, False otherwise |
Source code in rm_gallery/gallery/data/annotation/rewardbench2.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
|
RewardBench2Converter
Bases: DataConverter
Unified converter for conversation data with prompt, chosen and rejected responses (version 2)
Source code in rm_gallery/gallery/data/load/rewardbench2.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rewardbench2.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
RewardBenchAnnotationTemplate
Bases: BaseAnnotationTemplate
Reward Bench annotation template implementation
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
label_config
property
Return the Label Studio XML configuration for reward bench evaluation
process_annotations(annotation_data)
Process annotation data specific to reward bench evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Generic annotation data with ratings, choices, text_areas |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Processed data structured for reward bench evaluation |
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
validate_annotation_data(annotation_data)
Validate annotation data for reward bench evaluation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_data
|
Dict[str, Any]
|
Annotation data to validate |
required |
Returns:
Type | Description |
---|---|
bool
|
True if valid, False otherwise |
Source code in rm_gallery/gallery/data/annotation/rewardbench.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
RewardBenchConverter
Bases: DataConverter
Unified converter for conversation data with prompt, chosen and rejected responses
Source code in rm_gallery/gallery/data/load/rewardbench.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
convert_to_data_sample(data_dict, source_info)
Convert conversation data to DataSample format
Source code in rm_gallery/gallery/data/load/rewardbench.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
RewardDimensionWithScore
Bases: RewardDimension
Pointwise/Stepwise reward dimension with a numerical score.
Attributes:
Name | Type | Description |
---|---|---|
score |
float
|
Numerical value representing the reward magnitude |
Source code in rm_gallery/core/reward/schema.py
20 21 22 23 24 25 26 27 28 |
|
RewardRegistry
A registry management system for reward modules that maps module names to their corresponding implementation classes.
This class provides a centralized repository for registering and retrieving reward modules by string identifiers. Modules can be registered using decorators and later accessed by their string identifiers.
Attributes:
Name | Type | Description |
---|---|---|
_registry |
Dict[str, Type[BaseReward]]
|
Internal dictionary storing the mapping between reward module names and their classes. |
Source code in rm_gallery/core/reward/registry.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
get(name)
classmethod
Retrieve a registered reward module class by its identifier.
Provides safe access to registered modules without raising errors for missing entries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
String identifier of the reward module to retrieve |
required |
Returns:
Type | Description |
---|---|
Type[BaseReward] | None
|
The corresponding BaseReward subclass if found, None otherwise |
Source code in rm_gallery/core/reward/registry.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
list()
classmethod
Returns:
Type | Description |
---|---|
str
|
A list of all registered reward modules |
Source code in rm_gallery/core/reward/registry.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
register(name)
classmethod
Create a decorator to register a reward module class with a specified identifier.
The decorator pattern allows classes to be registered while maintaining their original identity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Unique string identifier for the reward module |
required |
module
|
The BaseReward subclass to be registered |
required |
Returns:
Type | Description |
---|---|
A decorator function that registers the module when applied to a class |
Source code in rm_gallery/core/reward/registry.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
RewardResult
Bases: BaseModel
, Generic[T]
Container for reward calculation results with generic type support.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
Identifier of the reward module that generated this result |
details |
List[T]
|
Collection of detailed reward information items |
extra_data |
dict
|
Additional metadata or context information |
Source code in rm_gallery/core/reward/schema.py
65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
RewriteListWiseReward
Bases: BaseHelpfulnessListWiseReward
Rewrite: the assistant aims to modifies existing text to alter its style while preserving the original information and intent.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/rewrite.py
17 18 19 20 21 22 23 24 |
|
RolePlayingListWiseReward
Bases: BaseHelpfulnessListWiseReward
Role Playing: Entails adopting specific characters or personas within text-based scenarios, engaging in dialogues or actions that reflect the assigned roles.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/role_playing.py
25 26 27 28 29 30 31 32 |
|
SafetyListWiseReward
Bases: BaseHarmlessnessListWiseReward
Safety: Comply with or refuse prompts related to harmful use cases as well as general compliance behaviors.
Source code in rm_gallery/gallery/rm/alignment/harmlessness/safety.py
19 20 21 22 23 24 25 26 |
|
SummarizationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Summarization: The text is compressed into a short form, retaining the main information, which is divided into extraction (directly selected from the original text) and production (rewriting the information).
Source code in rm_gallery/gallery/rm/alignment/helpfulness/summarization.py
23 24 25 26 27 28 29 30 31 32 |
|
TranslationListWiseReward
Bases: BaseHelpfulnessListWiseReward
Translation: Converting text from one language to another.
Source code in rm_gallery/gallery/rm/alignment/helpfulness/translation.py
21 22 23 24 25 26 27 28 |
|
get_tokenizer(tokenizer_type='tiktoken', encoding_name='cl100k_base', chinese_only=False, **kwargs)
Factory function to create tokenizer instances.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer_type
|
str
|
Type of tokenizer ("tiktoken", "jieba", "simple") |
'tiktoken'
|
encoding_name
|
str
|
Tiktoken encoding name (for tiktoken tokenizer) |
'cl100k_base'
|
chinese_only
|
bool
|
Whether to keep only Chinese characters (for jieba tokenizer) |
False
|
**kwargs
|
Additional arguments for tokenizer initialization |
{}
|
Returns:
Name | Type | Description |
---|---|---|
BaseTokenizer |
BaseTokenizer
|
Tokenizer instance |
Raises:
Type | Description |
---|---|
ValueError
|
If tokenizer_type is not supported |
Source code in rm_gallery/core/utils/tokenizer.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|