iterative
IterativePrincipleGenerator
Bases: AutoPrincipleGenerator
Iterative principle generator that combines evaluation, generation, and clustering.
Attributes:
Name | Type | Description |
---|---|---|
reward |
BaseListWisePrincipleReward
|
Reward module for principle-based evaluation |
max_epochs |
int
|
Maximum number of iteration cycles |
Source code in rm_gallery/core/reward/principle/iterative.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
cluster_with_feedback(samples, principles)
Clusters and optimizes principles from multiple samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
List[DataSample]
|
List of samples containing generated principles |
required |
principles
|
Dict[str, str]
|
Existing principles dictionary |
required |
Returns:
Type | Description |
---|---|
Optimized principles dictionary after clustering |
Source code in rm_gallery/core/reward/principle/iterative.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
evaluate(samples, principles, thread_pool, **kwargs)
Evaluates samples using current principles through thread pool execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
List[DataSample]
|
List of data samples to evaluate |
required |
principles
|
Dict[str, str]
|
Dictionary of {key: value} principles |
required |
thread_pool
|
ThreadPoolExecutor
|
Executor for parallel processing |
required |
**kwargs
|
Additional evaluation parameters |
{}
|
Returns:
Type | Description |
---|---|
Evaluation results from reward module |
Source code in rm_gallery/core/reward/principle/iterative.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
generate_with_feedback(sample, principles)
Generates new principles based on sample analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
DataSample
|
Single data sample for principle generation |
required |
principles
|
Dict[str, str]
|
Existing principles dictionary |
required |
Returns:
Type | Description |
---|---|
Modified sample with generated principles in metadata |
Source code in rm_gallery/core/reward/principle/iterative.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
run_batch(samples, thread_pool, principles=None)
Executes the iterative principle generation pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
List[DataSample]
|
List of initial data samples |
required |
thread_pool
|
ThreadPoolExecutor
|
Executor for parallel processing |
required |
Returns:
Type | Description |
---|---|
Dict[str, str]
|
Final optimized principles dictionary after iterations |
Source code in rm_gallery/core/reward/principle/iterative.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
PrincipleClusterTemplate
Bases: BaseGeneratorTemplate
Template class for clustering and organizing evaluation principles.
Methods:
Name | Description |
---|---|
format |
Formats a prompt for principle clustering and optimization. |
Source code in rm_gallery/core/reward/principle/iterative.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
format(examples, scenario, number, principles, **kwargs)
classmethod
Generates a structured prompt for principle clustering analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
examples
|
str
|
Pre-generated example principles for reference |
required |
scenario
|
str
|
Contextual description of the evaluation scenario |
required |
number
|
int
|
Maximum number of clustered principles to generate |
required |
principles
|
Raw principles to be clustered and optimized |
required | |
**kwargs
|
Additional formatting parameters |
{}
|
Returns:
Type | Description |
---|---|
str
|
Formatted prompt string for principle clustering |
Source code in rm_gallery/core/reward/principle/iterative.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
PrincipleGenerateTemplate
Bases: BaseGeneratorTemplate
Template class for generating principle-based evaluation prompts.
Methods:
Name | Description |
---|---|
format |
Formats a prompt for principle generation based on input parameters. |
Source code in rm_gallery/core/reward/principle/iterative.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
format(scenario, instruction, completions, prediction, groudtruth, number, principles, **kwargs)
classmethod
Generates a structured prompt for principle extraction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scenario
|
str
|
Contextual description of the evaluation scenario |
required |
instruction
|
str
|
Original instruction given to the model |
required |
completions
|
List[str]
|
List of candidate responses to evaluate |
required |
prediction
|
str | int
|
Index/ID of the predicted best completion |
required |
groudtruth
|
str | int
|
Index/ID of the ground truth best completion |
required |
number
|
int
|
Maximum number of principles to generate |
required |
principles
|
str
|
Existing principles to be refined/extended |
required |
**kwargs
|
Additional formatting parameters |
{}
|
Returns:
Type | Description |
---|---|
str
|
Formatted prompt string for principle generation |
Source code in rm_gallery/core/reward/principle/iterative.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|