# -*- coding: utf-8 -*-
"""
This file defines a multi-step workflow for the FrozenLake environment.
Modified from https://github.com/rllm-org/rllm/blob/main/rllm/environments/frozenlake/frozenlake.py
"""
from __future__ import annotations
import copy
import re
from dataclasses import asdict
from typing import List, Optional, Tuple
import numpy as np
from trinity.common.experience import Experience
from trinity.common.models.model import ModelWrapper
from trinity.common.workflows.envs.frozen_lake.utils import (
GRID_LOOKUP,
MAP_LOOKUP,
SYSTEM_PROMPT,
generate_random_map,
get_goal_position,
)
from trinity.common.workflows.workflow import WORKFLOWS, MultiTurnWorkflow, Task
[docs]
@WORKFLOWS.register_module("frozen_lake_workflow")
class FrozenLakeWorkflow(MultiTurnWorkflow):
"""
FrozenLake environment for multi-step workflows.
## Description
The game starts with the player at random location of the frozen lake grid world with the
goal located at another random location for the 4x4 environment.
## Action Space
The action shape is `(1,)` in the range `{0, 3}` indicating
which direction to move the player.
NOTE the action space is different from gymnasium.envs.toy_text.frozen_lake.FrozenLakeEnv, start from 1
use action_map to map from custom action to action defined in FrozenLakeEnv in gymnasium
- 0: Still
- 1: Left
- 2: Down
- 3: Right
- 4: Up
## Starting State
The episode starts with the player at random location
## Rewards
Reward schedule:
- Reach goal: +1
- Reach hole: 0
- Reach frozen: 0
## Arguments
`is_slippery`: if action is left and is_slippery is True, then:
- P(move left)=1/3
- P(move up)=1/3
- P(move down)=1/3
## Example
P _ _ _
_ _ _ O
O _ O _
O _ _ G
"""
can_reset: bool = False # GymFrozenLakeEnv can only reset the player position, not the environment configuration.
is_async: bool = True
can_repeat: bool = False
[docs]
def __init__(
self,
model: ModelWrapper,
task: Task,
auxiliary_models: Optional[List] = None,
):
"""Initialize the FrozenLake workflow.
Args:
model: The model wrapper to use for generating actions.
task: The task configuration containing workflow-specific arguments.
auxiliary_models: Optional list of auxiliary models.
"""
super().__init__(
model=model,
task=task,
auxiliary_models=auxiliary_models,
)
# Import gymnasium here to avoid import error if gymnasium is not installed
# and this workflow is not used
try:
import gymnasium as gym
from gymnasium.envs.toy_text.frozen_lake import (
FrozenLakeEnv as GymFrozenLakeEnv,
)
except ImportError as e:
error_message = (
f"Gymnasium is not installed. Please install gymnasium first before "
f"running the frozen_lake workflow. Error: {str(e)}"
)
self.logger.error(error_message)
raise ImportError(error_message)
# Extract workflow-specific arguments
workflow_args = task.workflow_args if hasattr(task, "workflow_args") else {}
self.env_max_steps = workflow_args.get("env_max_steps", 8)
self.agent_max_steps = workflow_args.get("agent_max_steps", 10)
self.desc = workflow_args.get("desc", None)
self.is_slippery = workflow_args.get("is_slippery", False)
self.max_response_tokens = self.rollout_args.get("max_response_tokens", 10240)
# Extract task-specific arguments
self.raw_task = task.raw_task if hasattr(task, "raw_task") else {}
self.size = self.raw_task.get("size", 1)
self.p = self.raw_task.get("p", 0.8)
self.seed = self.raw_task.get("seed", 42)
if self.desc is None:
random_map, goal_position = generate_random_map(
size=self.size, p=self.p, seed=self.seed, max_steps=self.env_max_steps
)
else:
random_map = np.asarray(copy.deepcopy(self.desc), dtype="c")
goal_position = get_goal_position(random_map)
self.goal_position = goal_position
# Create the gym environment
self.gym_env = GymFrozenLakeEnv(desc=random_map[:], is_slippery=self.is_slippery)
self.action_space = gym.spaces.Discrete(4, start=1)
# Define action map and invalid action
self.action_map = {
1: 0,
2: 1,
3: 2,
4: 3,
} # map from custom Env action to action defined in FrozenLakeEnv in gymnasium
self.invalid_action = 0
# Agent-related state
self.step_count: int = 0
self.step_rewards: List[float] = []
self.current_observation: Optional[str] = None
self.done: bool = False
self.last_observation: Optional[str] = None
@property
def rollout_args(self):
return asdict(self.task.rollout_args)
def _get_player_position(self) -> Tuple[int, int]:
"""Get the current player position.
Returns:
Tuple of (row, col) representing the player position.
"""
return (
self.gym_env.s // self.gym_env.ncol,
self.gym_env.s % self.gym_env.ncol,
) # (row, col)
[docs]
def finished(self) -> bool:
"""Check if the episode is finished.
Returns:
True if the player is on goal (G) or hole (H), False otherwise.
"""
player_pos = self._get_player_position()
return self.gym_env.desc[player_pos] in b"GH"
[docs]
def success(self) -> bool:
"""Check if the agent has reached the goal (G).
Returns:
True if the player is on goal (G), False otherwise.
"""
player_pos = self._get_player_position()
return self.gym_env.desc[player_pos] in b"G"
[docs]
def env_step(self, action: int):
"""Execute a step in the environment.
Maps custom action to gymnasium FrozenLakeEnv action and takes the step.
Checks if the action is effective (whether player moves in the env).
Args:
action: The action to take.
Returns:
Tuple of (observation, reward, done, info).
"""
if self.success():
return self.render(), 1, True, {"action_is_effective": False}
if not action:
action = self.invalid_action
action = int(action)
if action == self.invalid_action or action not in self.action_map:
return self.render(), 0, False, {"action_is_effective": False}
prev_player_position = int(self.gym_env.s)
player_pos, reward, done, _, prob = self.gym_env.step(self.action_map[action])
obs = self.render()
return obs, reward, done, {"action_is_effective": prev_player_position != int(player_pos)}
[docs]
def render(self, mode="tiny_rgb_array"):
"""Render the environment.
Args:
mode: Rendering mode. Options: "tiny_rgb_array", "list", "state", "rgb_array", "ansi".
Returns:
Rendered observation based on the mode.
"""
assert mode in ["tiny_rgb_array", "list", "state", "rgb_array", "ansi"]
if mode in ["rgb_array", "ansi"]:
prev_render_mode = self.gym_env.render_mode
self.gym_env.render_mode = mode
obs = self.gym_env.render()
self.gym_env.render_mode = prev_render_mode
return obs
room_state = copy.deepcopy(self.gym_env.desc)
# replace the position of start 'S' with 'F'
position_S = np.where(room_state == b"S")
room_state[position_S] = b"F"
# replace the position of the player with 'P'
position_P = self._get_player_position()
room_state[position_P] = b"P"
if mode == "state":
# transform 'S', 'F', 'H', 'G' to numpy integer array
room_state = np.vectorize(lambda x: MAP_LOOKUP[x])(room_state)
# add player in hole or player on goal
if self.gym_env.desc[position_P] == b"H":
room_state[position_P] = 4
elif self.gym_env.desc[position_P] == b"G":
room_state[position_P] = 5
return room_state
room_state = self.render(mode="state").tolist()
if mode == "list":
def lookup(cell):
return GRID_LOOKUP.get(cell, "?").strip("\t").strip()
return [" ".join(lookup(cell) for cell in row) for row in room_state]
if mode == "tiny_rgb_array":
def lookup(cell):
return GRID_LOOKUP.get(cell, "?")
result = "\n".join("".join(lookup(cell) for cell in row) for row in room_state)
return result
[docs]
async def run_async(self) -> List[Experience]:
"""Run the workflow and return a list of experiences.
Returns:
List of Experience objects, one for each rollout.
"""
# Reset environment and state for a new episode
# But this only resets the player position, not the environment configuration.
self.gym_env.reset(seed=self.seed)
observation = self.render()
self.current_observation = str(observation)
self.done = False
self.step_rewards = []
self.step_count = 0
self.action = None
terminate_reason = None
truncate_status = None
# Initialize messages
messages = []
system_prompt = SYSTEM_PROMPT
messages.append({"role": "system", "content": system_prompt})
# Run episode until done or max_steps reached
for step in range(self.agent_max_steps):
# Format observation for the model
user_prompt_content = (
f"Current Observation ({self.step_count}): \n"
+ self.current_observation
+ "\n"
+ "You have not achieved the goal, P has not reached G yet. Please give the next action."
)
if self.step_count > 0 and self.action is not None:
if self.last_observation == self.current_observation:
user_prompt_content += "\nYour last response is invalid. Your position didn't change at all. You may need to recheck your thinking process, action outputted, and the format of response. Remember, you should only output the NEXT ACTION at each interation in the ``` ```. For example, if you want to move up, you should output ```Up```."
if self.agent_max_steps is not None and self.agent_max_steps - self.step_count > 0:
user_prompt_content += f"\nThe maximum number of steps remaining is {self.agent_max_steps - self.step_count}."
messages.append({"role": "user", "content": user_prompt_content})
messages_token_len = await self.model.get_message_token_len(messages)
if step == 0:
max_tokens = self.max_response_tokens
init_prompt_token_len = messages_token_len
else:
response_token_len = messages_token_len - init_prompt_token_len
max_tokens = self.max_response_tokens - response_token_len
if max_tokens <= 0:
messages = messages[:-1] # Remove the last user message
self.done = False
self.step_rewards.append(0)
terminate_reason = "max_tokens_reached"
truncate_status = "response_truncated"
break
# Get action from the model
rollout_args = self.rollout_args.copy()
rollout_args["n"] = 1
rollout_args["max_tokens"] = max_tokens
responses = await self.model.chat_async(messages, **rollout_args)
response_text = responses[0].response_text
messages.append({"role": "assistant", "content": response_text})
# Parse action from response
_, action_str = self._parse_model_response(response_text)
action = int(action_str) if action_str.isdigit() else self.invalid_action
self.action = action
# Execute action in the environment
observation, reward, done, info = self.env_step(action)
# Update internal state
self.last_observation = self.current_observation
self.current_observation = str(observation)
self.done = done
self.step_rewards.append(reward)
self.step_count += 1
if self.done:
terminate_reason = "success"
break
if terminate_reason is None:
terminate_reason = "max_steps_reached"
# Create experience from messages
final_reward = sum(self.step_rewards)
# print(f"final_reward: {final_reward}, terminate_reason: {terminate_reason}")
experience = self.process_messages_to_experience(
messages=messages,
reward=final_reward,
info={
"env_steps": self.step_count,
"env_done": 1 if self.done else 0,
"test_score": final_reward,
},
truncate_status=truncate_status,
)
return [experience]
def _parse_model_response(self, response: str) -> tuple[str, str]:
"""Parse the model response to extract thought and action.
Args:
response: The model's response text.
Returns:
Tuple of (thought, action_str).
"""
DIRECTION_MAP = {"left": 1, "down": 2, "right": 3, "up": 4}
thought = response
action_str = str(self.invalid_action)
matches = re.findall(r"```(.*?)```", response, re.DOTALL)
if matches:
last_match_content = matches[-1].strip()
last_match_index = response.rfind(f"```{last_match_content}```")
if last_match_index != -1:
thought = response[:last_match_index].strip()
extracted_text = last_match_content.lower()
if extracted_text in DIRECTION_MAP:
action_str = str(DIRECTION_MAP[extracted_text])
elif extracted_text.isdigit() and int(extracted_text) in DIRECTION_MAP.values():
action_str = str(int(extracted_text))
return thought, action_str