
Off-Policy Reinforcement Learning via Online Policy
Mirror Descent (OPMD)

Author

April 17, 2025

We present some findings about off-policy reinforcement learning (with a focus on the bandit setting)
through the lens of online policy mirror descent (OPMD). At the end of this technical report, we arrive at
the surprising conclusion that the standard policy gradient, weighted by a coefficient and using the group
mean reward as the baseline, can be a feasible direction for updating the policy even in off-policy settings
(while the standard theory of policy gradient only holds for on-policy settings). This has been validated
empirically in our exploratory experiments during the development of Trinity-RFT.

1 OPMD: Kimi’s version
This section is a recap of the OPMD variant proposed in the technical report of Kimi k1.5 [2].

Analysis. For a specific task/query x and a reference policy πref, consider the following objective for
training policy πθ at a particular iteration of the RL process:

max
θ

J(θ;x, πref) := Ey∼πθ(·|x)[r(x, y)]− τ ·DKL
(
πθ(·|x)∥πref(·|x)

)
.

Note that πref can be changing during the RL process. In [2], πref is set to πθt
at the t-th iteration, i.e., when

updating the policy from θt to θt+1.
The optimal policy π⋆ for this objective satisfies the following: for any response y,

π⋆(y|x) = πref(y|x)er(x,y)/τ

Z
∝ πref(y|x)er(x,y)/τ , (1)

where Z := Z(x, πref) =

∫
πref(y

′|x)er(x,y
′)/τ dy′ = Ey′∼πref(·|x)[e

r(x,y′)/τ ]. (2)

Taking logarithm of both sides of Eq. (1), we see that the optimal policy π⋆ must satisfy the following
consistency condition:

r(x, y)− τ · logZ − τ ·
(
log π⋆(y|x)− log πref(y|x)

)
= 0.

Algorithm. Based on the above analysis, [2] proposes the following OPMD variant. For a query x, first
sample K rollouts y1, . . . , yK ∼ πref(·|x) from the reference policy, then define a surrogate loss as follows:

Ĵ(θ;x, πref) :=
∑
i∈[K]

(
r(x, yi)− τ · log Ẑ − τ ·

(
log πθ(yi|x)− log πref(yi|x)

))2

,

where τ · log Ẑ := τ · log
( 1

K

∑
i∈[K]

er(x,yi)/τ
)
.

Although this is an off-policy method (since the rollout policy πref is different from the policy πθ being
updated), it is still limited because the rollouts have to be sampled from the particular policy πref = πθt

for the t-th iteration of the RL process, as mentioned earlier. The reason for this limitation is the need of
estimating Z = Z(x, πref) using samples from πref(·|x).

1



2 Pairwise OPMD
Analysis. To eliminate the Z term, we note that Eq. (1) is equivalent to the following:

∀ y1 and y2,
π⋆(y1|x)
π⋆(y2|x)

=
πref(y1|x)
πref(y2|x)

e

(
r(x,y1)−r(x,y2)

)
/τ .

Taking logarithm of both sides, we have

log π⋆(y1|x)− log π⋆(y2|x) = log πref(y1|x)− log πref(y2|x) +
r(x, y1)− r(x, y2)

τ
,

or equivalently,

r(x, y1)− τ ·
(
log π⋆(y1|x)− log πref(y1|x)

)
= r(x, y2)− τ ·

(
log π⋆(y2|x)− log πref(y2|x)

)
.

Note that this holds true for a pair of arbitrary responses y1 and y2.

Algorithm. For a query x and K arbitrary responses y1, . . . , yK , we define the following surrogate loss:

Ĵ(θ;x, πref) :=
∑

1≤i<j≤K

(
ai − aj

)2
,

where ai := r(x, yi)− τ ·
(
log πθ(yi|x)− log πref(yi|x)

)
, i ∈ [K].

Here πref can be any reference policy for KL regularization, regardless of how y1, . . . , yK were sampled. While
this is a fully off-policy RL method, it has its own limitation: to run this algorithm, we should make sure that
multiple (at least 2) rollouts for the same task are included within one micro-batch (whose size is typically
much smaller that of a batch or mini-batch), which adds to infrastructure complexity.

Remark 1. In the special case of K = 2, the above method, termed as “pairwise OPMD”, turns out to be the
same as “contrastive policy gradient” proposed in [1], albeit with a simpler and more intuitive derivation.

3 OPMD: an embarrassingly simple variant
Analysis. Consider the t-th iteration of the RL process, i.e., updating from θt to θt+1, and use πref = πθt

as the reference policy. For a specific task/query x, recall from Section 1 the original objective:

max
θ

J(θ;x, πθt
) := Ey∼πθ(·|x)[r(x, y)]− τ ·DKL

(
πθ(·|x)∥πθt

(·|x)
)
.

We leverage the analysis in Section 2, and take a closer look at the following pairwise loss for ai and aj ,
normalized by 1/(1 + τ)2 to make the loss scale invariant to the hyperparameter τ :

(ai − aj)
2

(1 + τ)2
=

1

(1 + τ)2

[(
r(x, yi)− r(x, yj)

)
− τ ·

((
log πθ(yi|x)− log πθt

(yi|x)
)
−
(
log πθ(yj |x)− log πθt

(yj |x)
))]2

.

The trick here is that, if we only intend to take one gradient step of this loss at θ = θt, then the value of
(log πθ(yi|x)− log πθt(yi|x))− (log πθ(yj |x)− log πθt(yj |x)) is simply zero. As a result,

∇θ
(ai − aj)

2

(1 + τ)2

∣∣∣
θt

=
−2τ

(1 + τ)2

(
r(x, yi)− r(x, yj)

)(
∇θ log πθ(yi|x)|θt −∇θ log πθ(yj |x)|θt

)
,

and thus

∇θ

∑
1≤i<j≤K

(ai − aj)
2

(1 + τ)2

∣∣∣
θt

2



=
∑

1≤i<j≤K

−2τ

(1 + τ)2

(
r(x, yi)− r(x, yj)

)(
∇θ log πθ(yi|x)|θt

−∇θ log πθ(yj |x)|θt

)
=

∑
1≤i<j≤K

−2τ

(1 + τ)2

((
r(x, yi)− r(x, yj)

)
∇θ log πθ(yi|x)|θt +

(
r(x, yj)− r(x, yi)

)
∇θ log πθ(yj |x)|θt

)
=

−2τ

(1 + τ)2

∑
1≤i≤K

∑
1≤j≤K

(
r(x, yi)− r(x, yj)

)
∇θ log πθ(yi|x)|θt

=
−2τ

(1 + τ)2

∑
1≤i≤K

K ·
(
r(x, yi)− r(x)

)
∇θ log πθ(yi|x)|θt

,

where r(x) := 1
K

∑
j∈[K] r(x, yj) in the last line.

Algorithm. To this end, we update from θt to θt+1 by taking one gradient step of the following surrogate
loss, where we simplify the constant factor from 2τ/(1 + τ)2 to 1/(1 + τ) and also drop the K factor:

min
θ

Ĵ(θ;x) := − 1

1 + τ

∑
1≤i≤K

(
r(x, yi)− r(x)

)
log πθ(yi|x).

This is simply the standard policy gradient using the group mean reward as the baseline, but derived
differently and applicable to off-policy cases. The hyperparameter τ controls the size of each policy update.

As a heuristic, we simply add a regularization term (denoted by g) to the above objective when additional
regularization with respect to a fixed policy, e.g., a SFT model πsft, is desired:

min
θ

Ĵ(θ;x) := − 1

1 + τ

∑
1≤i≤K

(
r(x, yi)− r(x)

)
log πθ(yi|x) + β · g

(
πθ, πsft;x, y1, . . . , yK

)
.

References
[1] Yannis Flet-Berliac, Nathan Grinsztajn, Florian Strub, Bill Wu, Eugene Choi, Chris Cremer, Arash Ah-

madian, Yash Chandak, Mohammad Gheshlaghi Azar, Olivier Pietquin, and Matthieu Geist. Contrastive
policy gradient: Aligning llms on sequence-level scores in a supervised-friendly fashion. In EMNLP, 2024.

[2] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming Yuan, Enzhe
Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao Ding, Hao Hu,
Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao,
Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang,
Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang,
Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying
Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He,
Xianghui Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying
Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu,
Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi
k1.5: Scaling reinforcement learning with llms. arXiv, 2025.

3


	1 OPMD: Kimi's version
	2 Pairwise OPMD
	3 OPMD: an embarrassingly simple variant

