Source code for data_juicer.core.adapter

import json
import os
from copy import deepcopy

from datasets import Dataset, concatenate_datasets
from datasets.config import DEFAULT_MAX_BATCH_SIZE

from data_juicer.analysis.measure import RelatedTTestMeasure
from data_juicer.core.monitor import Monitor
from data_juicer.ops import UNFORKABLE
from data_juicer.utils.cache_utils import dataset_cache_control
from data_juicer.utils.constant import Fields
from data_juicer.utils.process_utils import setup_mp


[docs] class Adapter: MAX_BATCH_SIZE = 10000
[docs] def __init__(self, cfg: dict): self.cfg = cfg # insight mining related self.enable_insight_mining = self.cfg.open_insight_mining # resource probe related self.idle_resources = Monitor.monitor_current_resources()
[docs] @staticmethod def execute_and_probe(dataset, operators, sample_interval=0.5): """ Process the input dataset and probe related information for each OP in the specified operator list. For now, we support the following targets to probe: "resource": resource utilization for each OP. "speed": average processing speed for each OP. The probe result is a list and each item in the list is the probe result for each OP. """ if operators is None or len(operators) == 0: return [] # number of test samples sample_num = len(dataset) # resource utilization list resource_util_list = [] # probe for each OP unforkable_operators = set(UNFORKABLE.modules.keys()) for op in operators: # select suitable mp method for each OP mp_context = ['forkserver', 'spawn'] if ( op.use_cuda() or op._name in unforkable_operators) else None setup_mp(mp_context) # expand the test dataset according to the runtime number of # processes to ensure enough data for a batch and probe the true # resource utilization for each OP expanded_dataset = concatenate_datasets([dataset] * op.runtime_np()) # set the test batch size and save the old one if op.is_batched_op(): old_batch_size = op.batch_size op.batch_size = sample_num # run single op and monitor the resource utilization _, resource_util_per_op = Monitor.monitor_func( op.run, args=(expanded_dataset, ), sample_interval=sample_interval) # calculate speed resource_util_per_op[ 'speed'] = sample_num / resource_util_per_op['time'] resource_util_list.append(resource_util_per_op) # # restore the batch size if op.is_batched_op(): op.batch_size = old_batch_size return resource_util_list
[docs] @staticmethod def take_batch(dataset, config): """ Split the dataset into batches based on configuration and load factor. :param dataset: The dataset to be split :param config: Configuration settings, including batch size :return: An iterator of batches """ # get initial batch size batch_size = config.get('batch_size', DEFAULT_MAX_BATCH_SIZE) # should be in [1, 10000] batch_size = min(max(batch_size, 1), Adapter.MAX_BATCH_SIZE) # check if there are enough samples num_samples = len(dataset) if batch_size >= num_samples: return dataset else: return dataset.take(batch_size)
[docs] def adapt_workloads(self, dataset, operators): """ Manage the scheduling and load balancing for the dataset processing. :param dataset: The dataset that needs to be processed :param operators: Operators in the data recipe """ # TODO: set batch size to 1 for all OPs for probing load_analysis_res, probed_batch_size = self.probe_small_batch( dataset, operators) # calculate batch size for each OP according to the analysis results bs_per_op = self.batch_size_strategy(load_analysis_res, base_bs=probed_batch_size) return bs_per_op
[docs] @dataset_cache_control(on=True) def probe_small_batch(self, dataset, operators): """ Perform small batch pre-execution to probe available resources, current load and estimated OP speed, returning load factors and speed ranks for each OP. Notice: the probe should be run with cache enabled to avoid removing the cache files of the input dataset. :param dataset: The dataset to pre-execute small batch on :param operators: The OP list to be pre-execution and probe :return: A list of probe results for each OP and the length of data batch to probe. """ # take a small batch data_batch = self.take_batch(dataset, self.cfg) # process and monitor the resource utilization resource_util_list = self.execute_and_probe(data_batch, operators) # analyze resource utilization analysis_res = Monitor.analyze_resource_util_list(resource_util_list) return analysis_res, len(data_batch)
[docs] def batch_size_strategy(self, load_analysis_res, base_bs=1, util_th=0.9): """ Decide the batch size for each op according to their workload analysis result and expected utilization threshold. We need to guarantee that the resource utilization won't exceed the threshold. Now we only consider the buckets effect, which means the max batch size is decided by the max utilization of all types of resources except GPU util (decided by num_proc). """ batch_size_per_op = [] # compute left utils according to the util_th left_utils = {} for key in self.idle_resources: if 'util.' not in key or 'GPU' in key: continue left_utils[key] = max(0, util_th - self.idle_resources[key]) for item in load_analysis_res: max_util = 1e-5 max_key = min(left_utils.items(), key=lambda it: it[1])[0] analysis_res = item['resource_analysis'] for key in analysis_res: if 'util.' not in key or 'GPU' in key: continue used_util = max( 0, analysis_res[key]['max'] - self.idle_resources[key]) if used_util > max_util: max_util = used_util max_key = key load_factor = left_utils[max_key] / max_util bs_this_op = min(max(int(base_bs * load_factor), 1), self.MAX_BATCH_SIZE) batch_size_per_op.append(bs_this_op) return batch_size_per_op
[docs] @dataset_cache_control(on=True) def analyze_small_batch(self, dataset, current_state): """ Perform small batch analysis to probe the current OP-wise stats/meta distributions. The analyzed results will be stored in the directory `{work_dir}/insight_mining`. Notice: the probe should be run with cache enabled to avoid removing the cache files of the input dataset. :param dataset: The dataset to analyze small batch on :param current_state: A string to indicate the current state of the input dataset. It usually consists of a number of the index of the OP processed just now and the OP name, e.g. "1_text_length_filter". """ # prepare analyzer config new_cfg = deepcopy(self.cfg) # check ops to mine new_cfg.auto = True new_cfg.config = None if len(new_cfg.op_list_to_mine) > 0: new_cfg.process = [{ op_name: {} } for op_name in new_cfg.op_list_to_mine] # update work dir new_cfg.work_dir = os.path.join(new_cfg.work_dir, 'insight_mining', current_state) new_cfg.export_path = os.path.join(new_cfg.work_dir, f'{current_state}.jsonl') # close insight mining and monitor for inner analysis new_cfg.open_insight_mining = False new_cfg.open_monitor = False # init the analyzer from data_juicer.core.analyzer import Analyzer analyzer = Analyzer(new_cfg) # remove existing stats and meta in dataset target_fields = {Fields.stats, Fields.meta} target_fields = target_fields.intersection(set(dataset.features)) if len(target_fields) > 0: dataset = dataset.remove_columns(list(target_fields)) analyzer.run(dataset, skip_return=True)
[docs] def insight_mining(self, pval_th=0.05): """ Mining the insights from the OP-wise analysis results. For now, we use T-Test to check the significance of stats/meta changes before and after each OP processing. If the p-value is less than a given threshold (usually 0.05), we think the stats/meta changes are significant. The insight mining results will be stored in the file `{work_dir}/insight_mining/insight_mining.json`. :param pval_th: the threshold of p-value. """ work_dir = os.path.join(self.cfg.work_dir, 'insight_mining') res_order = [ d for d in os.listdir(work_dir) if os.path.isdir(os.path.join(work_dir, d)) ] res_order.sort() # collect analysis results analysis_results = {} for res_dir in res_order: res = Dataset.from_json( os.path.join(work_dir, res_dir, f'{res_dir}_stats.jsonl')).flatten() analysis_results[res_dir] = res # distribution change significance analysis ttest_measure = RelatedTTestMeasure() sig_res = {} # i = 0 is the original dataset for i in range(1, len(res_order)): prev_res = analysis_results[res_order[i - 1]] curr_res = analysis_results[res_order[i]] # only consider common stats and meta common_features = list( set(prev_res.features).intersection(set(curr_res.features))) curr_sig_res = {} for feat in common_features: ttest_res = ttest_measure(prev_res[feat], curr_res[feat]) curr_sig_res[feat] = { 't-statistic (standardized mean difference)': ttest_res.statistic, 'p-value': ttest_res.pvalue, 'significant': True if ttest_res.pvalue < pval_th else False, } sig_res[res_order[i]] = curr_sig_res with open(os.path.join(work_dir, 'insight_mining.json'), 'w') as out: json.dump(sig_res, out)