import os
from multiprocessing import Pool
import pdfplumber
from datasets import Dataset, concatenate_datasets, load_dataset
from docx import Document
from loguru import logger
from data_juicer.utils.cache_utils import DATA_JUICER_CACHE_HOME
from data_juicer.utils.file_utils import find_files_with_suffix
from .formatter import FORMATTERS, LocalFormatter, add_suffixes, unify_format
[docs]
@FORMATTERS.register_module()
class TextFormatter(LocalFormatter):
"""
The class is used to load and format text-type files.
e.g. `['.txt', '.pdf', '.cpp', '.docx']`
"""
SUFFIXES = [
'.docx', '.pdf', '.txt', '.md', '.tex', '.asm', '.bat', '.cmd', '.c',
'.h', '.cs', '.cpp', '.hpp', '.c++', '.h++', '.cc', '.hh', '.C', '.H',
'.cmake', '.css', '.dockerfile', '.f90', '.f', '.f03', '.f08', '.f77',
'.f95', '.for', '.fpp', '.go', '.hs', '.html', '.java', '.js', '.jl',
'.lua', '.markdown', '.php', '.php3', '.php4', '.php5', '.phps',
'.phpt', '.pl', '.pm', '.pod', '.perl', '.ps1', '.psd1', '.psm1',
'.py', '.rb', '.rs', '.sql', '.scala', '.sh', '.bash', '.command',
'.zsh', '.ts', '.tsx', '.vb', 'Dockerfile', 'Makefile', '.xml', '.rst',
'.m', '.smali'
]
[docs]
def __init__(self,
dataset_path,
suffixes=None,
add_suffix=False,
**kwargs):
"""
Initialization method.
:param dataset_path: a dataset file or a dataset directory
:param suffixes: files with specified suffixes to be processed
:param add_suffix: Whether to add file suffix to datase meta
info
:param kwargs: extra args
"""
super().__init__(
dataset_path=dataset_path,
suffixes=suffixes if suffixes else self.SUFFIXES,
type='text',
add_suffix=add_suffix,
**kwargs,
)
self.dataset_path = dataset_path
self.add_suffix = add_suffix
[docs]
def load_dataset(self, num_proc: int = 1, global_cfg=None) -> Dataset:
"""
Load a dataset from local text-type files.
:param num_proc: number of processes when loading the dataset
:param global_cfg: the global cfg used in consequent processes,
:return: unified_format_dataset.
"""
# extract text to cache directory
extracted_dataset_path = os.path.join(
DATA_JUICER_CACHE_HOME,
os.path.basename(os.path.abspath(self.dataset_path)))
for file_type in self.data_files:
# extract text from docx or pdf files, and save as txt type
if file_type == '.docx' or file_type == '.pdf':
extracted_filetype_path = os.path.join(extracted_dataset_path,
file_type.strip('.'))
if not os.path.exists(extracted_filetype_path):
os.makedirs(extracted_filetype_path)
logger.info('Extracting text from {} files...'.format(
file_type.strip('.')))
extract_func = extract_txt_from_docx \
if file_type == '.docx' else extract_txt_from_pdf
pool = Pool(num_proc)
for data_file in self.data_files[file_type]:
pool.apply_async(func=extract_func,
args=(
data_file,
extracted_filetype_path,
))
pool.close()
pool.join()
logger.info(f'Extracted text files are stored in directory '
f'{extracted_filetype_path}')
# look for extracted txt files
self.data_files[file_type] = find_files_with_suffix(
extracted_filetype_path, '.txt')['.txt']
# load text dataset, one text file as one sample
datasets = load_dataset('text',
data_files={
key.strip('.'): self.data_files[key]
for key in self.data_files
},
sample_by='document',
num_proc=num_proc,
**self.kwargs)
# whether to add file suffix to datase meta info
if self.add_suffix:
logger.info('Add suffix info into dataset...')
datasets = add_suffixes(datasets, num_proc)
else:
datasets = concatenate_datasets([ds for _, ds in datasets.items()])
return unify_format(datasets,
text_keys=self.text_keys,
num_proc=num_proc,
global_cfg=global_cfg)