Source code for data_juicer.ops.aggregator.nested_aggregator

from typing import Dict, Optional

from loguru import logger
from pydantic import PositiveInt

from data_juicer.ops.base_op import OPERATORS, Aggregator
from data_juicer.utils.common_utils import (avg_split_string_list_under_limit,
                                            is_string_list, nested_access)
from data_juicer.utils.lazy_loader import LazyLoader
from data_juicer.utils.model_utils import get_model, prepare_model

torch = LazyLoader('torch', 'torch')
vllm = LazyLoader('vllm', 'vllm')

OP_NAME = 'nested_aggregator'


# TODO: LLM-based inference.
[docs] @OPERATORS.register_module(OP_NAME) class NestedAggregator(Aggregator): """ Considering the limitation of input length, nested aggregate contents for each given number of samples. """ DEFAULT_SYSTEM_PROMPT = ('给定一些文档碎片,将这些文档整合成一个文档总结。\n' '要求:\n' '- 总结的长度与文档碎片的平均长度基本一致\n' '- 不要包含主观看法\n' '- 注意要尽可能保留文本的专有名词\n' '- 只输出文档总结不要输出其他内容\n' '- 参考如下样例:\n' '文档碎片:\n' '唐僧师徒四人行至白虎岭,遇上了变化多端的白骨精。\n\n' '文档碎片:\n' '白骨精首次变身少女送斋,被孙悟空识破打死,唐僧责怪悟空。\n\n' '文档碎片:\n' '妖怪再变老妇寻女,又被悟空击毙,师傅更加不满,念紧箍咒惩罚。\n\n' '文档碎片:\n' '不甘心的白骨精第三次化作老公公来诱骗,依旧逃不过金睛火眼。\n\n' '文档碎片:\n' '最终,在观音菩萨的帮助下,真相大白,唐僧明白了自己的误解。\n\n' '\n' '文档总结:\n' '唐僧师徒在白虎岭三遇白骨精变化诱惑,悟空屡次识破击毙妖怪却遭误解,最终观音相助真相大白。') DEFAULT_INPUT_TEMPLATE = ('{sub_docs}\n\n' '文档总结:\n') DEFAULT_SUB_DOC_TEMPLATE = '文档碎片:\n{text}\n'
[docs] def __init__(self, api_model: str = 'gpt-4o', input_key: str = None, output_key: str = None, max_token_num: Optional[PositiveInt] = None, *, api_endpoint: Optional[str] = None, response_path: Optional[str] = None, system_prompt: Optional[str] = None, sub_doc_template: Optional[str] = None, input_template: Optional[str] = None, try_num: PositiveInt = 3, model_params: Dict = {}, sampling_params: Dict = {}, **kwargs): """ Initialization method. :param api_model: API model name. :param input_key: The input field key in the samples. Support for nested keys such as "__dj__stats__.text_len". It is text_key in default. :param output_key: The output field key in the samples. Support for nested keys such as "__dj__stats__.text_len". It is same as the input_key in default. :param max_token_num: The max token num of the total tokens of the sub documents. Without limitation if it is None. :param api_endpoint: URL endpoint for the API. :param response_path: Path to extract content from the API response. Defaults to 'choices.0.message.content'. :param system_prompt: The system prompt. :param sub_doc_template: The template for input text in each sample. :param input_template: The input template. :param try_num: The number of retry attempts when there is an API call error or output parsing error. :param model_params: Parameters for initializing the API model. :param sampling_params: Extra parameters passed to the API call. e.g {'temperature': 0.9, 'top_p': 0.95} :param kwargs: Extra keyword arguments. """ super().__init__(**kwargs) self.input_key = input_key or self.text_key self.output_key = output_key or self.input_key self.max_token_num = max_token_num self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT self.sub_doc_template = sub_doc_template or \ self.DEFAULT_SUB_DOC_TEMPLATE self.input_template = input_template or self.DEFAULT_INPUT_TEMPLATE self.sampling_params = sampling_params self.model_key = prepare_model(model_type='api', model=api_model, endpoint=api_endpoint, response_path=response_path, return_processor=True, **model_params) self.try_num = try_num
[docs] def parse_output(self, response): def if_match(text): quotes = [("'", "'"), ('"', '"'), ('“', '”'), ('‘', '’'), ('`', '`')] if len(text) < 2: return False if (text[0], text[-1]) in quotes: return True else: return False text = response.strip() while if_match(text): text = text[1:-1].strip() return text
[docs] def recursive_summary(self, sub_docs, rank=None): if not sub_docs: return '' if len(sub_docs) == 1: return sub_docs[0] model, tokenizer = get_model(self.model_key, rank, self.use_cuda()) token_nums = [len(tokenizer.encode(sub_doc)) for sub_doc in sub_docs] group_docs = avg_split_string_list_under_limit(sub_docs, token_nums, self.max_token_num) # merge every two if every single sub doc is a group group_num = len(group_docs) if group_num == len(sub_docs): group_docs = [ group_docs[i] + group_docs[i + 1] if i + 1 < group_num else group_docs[i] for i in range(0, group_num, 2) ] results = [] for docs in group_docs: doc_strs = [self.sub_doc_template.format(text=d) for d in docs] input_prompt = self.input_template.format( sub_docs='\n'.join(doc_strs)) messages = [{ 'role': 'system', 'content': self.system_prompt }, { 'role': 'user', 'content': input_prompt }] result = '' for i in range(self.try_num): try: response = model(messages, **self.sampling_params) result = self.parse_output(response) if len(result) > 0: break except Exception as e: logger.warning(f'Exception: {e}') results.append(result) return self.recursive_summary(results)
[docs] def process_single(self, sample=None, rank=None): # if not batched sample sub_docs = nested_access(sample, self.input_key) if not is_string_list(sub_docs): return sample sample[self.output_key] = self.recursive_summary(sub_docs, rank=rank) return sample