Source code for data_juicer.ops.deduplicator.ray_bts_minhash_deduplicator

import os
import time
from typing import List, Optional, Union

import numpy as np
import pyarrow as pa
import ray
import regex
from loguru import logger
from pydantic import Field, PositiveInt
from typing_extensions import Annotated

from data_juicer.utils.constant import HashKeys
from data_juicer.utils.model_utils import prepare_sentencepiece_model

from ..base_op import OPERATORS, Deduplicator
from ..common.helper_func import split_on_whitespace
from .document_minhash_deduplicator import (MAX_HASH, MERSENNE_PRIME,
                                            optimal_param, sha1_hash32)

BATCH_SIZE = 1000


@ray.remote
class IdGenerator:

    def __init__(self, start_id=0):
        self.next_id = start_id

    @ray.method(num_returns=2)
    def get_next_id(self, count):
        current_id = self.next_id
        self.next_id += count
        return (current_id, self.next_id)


@ray.remote(scheduling_strategy='SPREAD')
class EdgeBuffer:

    def __init__(self):
        self.edge_dict = {}

    def clear(self):
        self.edge_dict = {}

    def set_edges(self, edge_dict):
        self.edge_dict = edge_dict

    def get_edges(self, key):
        return self.edge_dict.pop(key, [])


@ray.remote(scheduling_strategy='SPREAD')
class BTSUnionFind:
    """
    A distributed implementation of Union-Find with load balancing.

    The original paper on BTS Union-Find is available at:
    https://ieeexplore.ieee.org/document/10598116
    """

    def __init__(
        self,
        union_threshold,
        parallel_num,
        parallel_id,
        remote_edge_buffers,
        max_pending_edge_buffer_task,
        num_edge_buffer_task_returns,
    ):
        self.union_threshold = union_threshold
        self.parallel_num = parallel_num
        self.parallel_id = parallel_id
        self.hash_table = {}
        self.parent = {}
        self.old_parent = {}
        self.remote_edge_buffers = remote_edge_buffers
        self.edge_buffer = []
        self.edge_list_dict = {}
        self.max_pending_edge_buffer_task = max_pending_edge_buffer_task
        self.num_edge_buffer_task_returns = num_edge_buffer_task_returns

    def add_key_value_pairs(self, pairs):
        for key, value in pairs:
            if key not in self.hash_table:
                self.hash_table[key] = []
            self.hash_table[key].append(value)
            if len(self.hash_table[key]) > self.union_threshold:
                self.hash_table[key] = [self.union_list(self.hash_table[key])]

    def flush_key_value_pairs(self):
        for value in self.hash_table.values():
            if len(value) > 1:
                self.union_list(value)
        del self.hash_table

    def balanced_union_find(self):
        for x, y in self.edge_buffer:
            self.union(x, y)
        self.edge_buffer = []
        result_refs = []
        for remote_edge_buffer in self.remote_edge_buffers:
            if len(result_refs) > self.max_pending_edge_buffer_task:
                ready_refs, result_refs = ray.wait(
                    result_refs, num_returns=self.num_edge_buffer_task_returns)
                edge_list = ray.get(ready_refs)
                for edges in edge_list:
                    for x, y in edges:
                        self.union(x, y)
                del ready_refs
            result_refs.append(
                remote_edge_buffer.get_edges.remote(self.parallel_id))
        edge_list = ray.get(result_refs)
        for edges in edge_list:
            for x, y in edges:
                self.union(x, y)
        del edge_list, result_refs
        self.rebalancing()
        return self.old_parent != self.parent

    def distribute_edge(self, u, v):
        hash_u = u // BATCH_SIZE % self.parallel_num
        hash_v = v // BATCH_SIZE % self.parallel_num
        if hash_u not in self.edge_list_dict:
            self.edge_list_dict[hash_u] = []
        self.edge_list_dict[hash_u].append((u, v))
        if hash_u != hash_v:
            if hash_v not in self.edge_list_dict:
                self.edge_list_dict[hash_v] = []
            self.edge_list_dict[hash_v].append((u, v))

    def set_edge_buffer(self):
        if self.parallel_id in self.edge_list_dict:
            self.edge_buffer = self.edge_list_dict[self.parallel_id]
            del self.edge_list_dict[self.parallel_id]
        else:
            self.edge_buffer = []
        ray.get(self.remote_edge_buffers[self.parallel_id].set_edges.remote(
            self.edge_list_dict))
        self.edge_list_dict = {}

    def edge_redistribution(self):
        self.flush_key_value_pairs()
        self.rebalancing()
        self.edge_list_dict = {}
        for u, v in self.parent.items():
            self.distribute_edge(u, v)
        self.parent = {}
        self.set_edge_buffer()

    def communication(self):
        self.edge_list_dict = {}
        del_list = []
        for u, v in self.parent.items():
            hash_u = u // BATCH_SIZE % self.parallel_num
            if self.parent[u] != self.old_parent.get(u, u) or (
                    hash_u != self.parallel_id and v not in self.parent):
                self.distribute_edge(u, v)
            if hash_u != self.parallel_id:
                del_list.append(u)
        self.old_parent = self.parent.copy()
        for u in del_list:
            del self.parent[u]
        self.set_edge_buffer()

    def find(self, x):
        if x not in self.parent:
            return x
        else:
            self.parent[x] = self.find(self.parent[x])
            return self.parent[x]

    def union(self, x, y):
        px = self.find(x)
        py = self.find(y)
        if px == py:
            return
        if px > py:
            px, py = py, px
        self.parent[py] = px

    def union_list(self, x_list):
        px_list = [self.find(x) for x in x_list]
        p = min(px_list)
        for px in px_list:
            if p != px:
                self.parent[px] = p
        return p

    def rebalancing(self):
        new_px_dict = {}
        for x in self.parent:
            hash_x = x // BATCH_SIZE % self.parallel_num
            px = self.find(x)
            key = (px, hash_x)
            if key not in new_px_dict:
                new_px_dict[key] = x
            else:
                new_px_dict[key] = min(new_px_dict[key], x)
        px_set = set(px for px, _ in new_px_dict)
        for px in px_set:
            hash_px = px // BATCH_SIZE % self.parallel_num
            key = (px, hash_px)
            if key not in new_px_dict:
                new_px_dict[key] = px
            else:
                new_px_dict[key] = min(new_px_dict[key], px)

        for x in self.parent:
            hash_x = x // BATCH_SIZE % self.parallel_num
            px = self.find(x)
            key = (px, hash_x)
            if x == new_px_dict[key]:
                continue
            self.parent[x] = new_px_dict[key]

    def squeeze(self):
        dup_keys = {
            x
            for x in self.parent
            if x // BATCH_SIZE % self.parallel_num == self.parallel_id
        }
        self.parent = dup_keys
        self.old_parent = {}
        self.edge_buffer = []
        ray.get(self.remote_edge_buffers[self.parallel_id].clear.remote())

    def dup_idx(self, queries):
        return [idx for uid, idx in queries if uid in self.parent]


OP_NAME = 'ray_bts_minhash_deduplicator'


[docs] @OPERATORS.register_module(OP_NAME) class RayBTSMinhashDeduplicator(Deduplicator): """ A MinhashLSH deduplicator based on RAY. """ # TODO: Set a more reasonable value EMPTY_HASH_VALUE = 'EMPTY' _batched_op = True
[docs] def __init__( self, tokenization: str = 'space', window_size: PositiveInt = 5, lowercase: bool = True, ignore_pattern: Optional[str] = None, num_permutations: PositiveInt = 256, jaccard_threshold: Annotated[float, Field(ge=0, le=1)] = 0.7, num_bands: Optional[PositiveInt] = None, num_rows_per_band: Optional[PositiveInt] = None, tokenizer_model: Optional[str] = None, union_find_parallel_num: Union[int, str] = 'auto', union_threshold: Optional[int] = 256, max_pending_edge_buffer_task: Optional[int] = 20, num_edge_buffer_task_returns: Optional[int] = 10, max_pending_filter_tasks: Optional[int] = 20, num_filter_task_returns: Optional[int] = 10, merge_batch_size: Optional[int] = 1000, *args, **kwargs, ): """ Initialization method. :param tokenization: tokenization method for sample texts. It should be one of [space, punctuation, character, sentencepiece]. For English-like languages, we recommend to use 'space', for Chinese-like languages, we recommend to use 'character', and for multiple languages, we recommend to use 'sentencepiece'. If using 'sentencepiece', please provided the model path in the 'tokenizer_model' field. :param window_size: window size of shingling :param lowercase: whether to convert text to lower case first :param ignore_pattern: whether to ignore sub-strings with specific pattern when computing minhash :param num_permutations: number of permutations in minhash computing :param jaccard_threshold: the min jaccard similarity threshold in near-duplicate detection. When the jaccard similarity of two sample texts is >= this threshold, they are regarded as similar samples and this op will only keep one of them after deduplication :param num_bands: number of bands in LSH. Default it's None, and it will be determined by an optimal params computation algorithm by minimize the weighted sum of probs of False Positives and False Negatives :param num_rows_per_band: number of rows in each band in LSH. Default it's None, and it will be determined by an optimal params computation algorithm :param tokenizer_model: path for the sentencepiece model, used for sentencepiece tokenization. :param union_find_parallel_num: number of parallel workers for union-find algorithm. Default it's 'auto', and it will be determined by half of the number of CPUs. :param union_threshold: threshold for minhash values group to perform union-find algorightm. Default it's 256. :param max_pending_edge_buffer_task: max number of pending edge buffer ray tasks. Default it's 20. :param num_edge_buffer_task_returns: number of edge buffer tasks for `ray.wait` to return. Default it's 10. :param max_pending_filter_tasks: max number of pending filter ray tasks. Default it's 20. :param num_filter_task_returns: number of filter tasks for `ray.wait` to return. Default it's 10. :param merge_batch_size: batch size for BTS operations. Default it's 1000. :param tmp_file_name: the temporary folder name for deduplication. """ super().__init__(*args, **kwargs) # about minhash computation self.tokenization = tokenization self.window_size = window_size self.lowercase = lowercase self.ignore_pattern = ignore_pattern if self.ignore_pattern: self.ignore_pattern = regex.compile(self.ignore_pattern) # check parameters if self.ignore_pattern and self.tokenization == 'punctuation': logger.warning('Be careful that tokenization with punctuations ' 'won\'t work if the ignore pattern includes ' 'punctuations.') self.punctuation_pattern = regex.compile(r'\p{P}') if self.tokenization == 'sentencepiece': if tokenizer_model is None: raise ValueError("To use 'sentencepiece' tokenization, " "'tokenizer_model' is required.") self.tokenizer = prepare_sentencepiece_model(tokenizer_model) else: self.tokenizer = None if self.tokenization == 'character': def tokenization_func(text): return { str.encode(text[i:i + self.window_size]) for i in range(len(text) - self.window_size) } elif self.tokenization == 'punctuation': def tokenization_func(text): tokens = self.punctuation_pattern.split(text) return { str.encode(' '.join(tokens[i:i + self.window_size])) for i in range(len(tokens) - self.window_size) } elif self.tokenization == 'space': def tokenization_func(text): tokens = split_on_whitespace(text) return { str.encode(' '.join(tokens[i:i + self.window_size])) for i in range(len(tokens) - self.window_size) } elif self.tokenization == 'sentencepiece': def tokenization_func(text): tokens = self.tokenizer.encode(text, out_type=str) return { str.encode(''.join(tokens[i:i + self.window_size])) for i in range(len(tokens) - self.window_size) } else: raise NotImplementedError( f'Unimplemented tokenization method [{self.tokenization}]') self.tokenization_func = tokenization_func # about deduplication self.num_permutation = num_permutations self.jaccard_threshold = jaccard_threshold self.num_bands = num_bands self.num_rows_per_band = num_rows_per_band # initialize deduplication parameters # check number of bands and rows if self.num_bands is None or self.num_rows_per_band is None: self.num_bands, self.num_rows_per_band = optimal_param( self.jaccard_threshold, self.num_permutation, ) # compute hash ranges and create hash tables self.hash_ranges = [(i * self.num_rows_per_band, (i + 1) * self.num_rows_per_band) for i in range(self.num_bands)] # generate permutations gen = np.random.RandomState(seed=42) self.perm_a, self.perm_b = np.array( [( gen.randint(1, MERSENNE_PRIME, dtype=np.uint64), gen.randint(0, MERSENNE_PRIME, dtype=np.uint64), ) for _ in range(self.num_permutation)], dtype=np.uint64, ).T if union_find_parallel_num == 'auto': union_find_parallel_num = int(ray.cluster_resources().get('CPU') / 2) else: union_find_parallel_num = int(union_find_parallel_num) self.max_pending_edge_buffer_task = max_pending_edge_buffer_task self.num_edge_buffer_task_returns = num_edge_buffer_task_returns self.max_pending_filter_tasks = max_pending_filter_tasks self.num_filter_task_returns = num_filter_task_returns self.merge_batch_size = min(merge_batch_size, union_find_parallel_num) logger.info(f'union_find_parallel_num = {union_find_parallel_num}') self.union_find_parallel_num = union_find_parallel_num self.union_threshold = union_threshold self.remote_edge_buffers = [ EdgeBuffer.remote() for _ in range(self.union_find_parallel_num) ] self.union_find_list = [ BTSUnionFind.remote( self.union_threshold, self.union_find_parallel_num, i, self.remote_edge_buffers, # TODO: fix this self.max_pending_edge_buffer_task, self.num_edge_buffer_task_returns, ) for i in range(self.union_find_parallel_num) ] empty_hash_value = np.full((self.num_rows_per_band, ), MAX_HASH, dtype=np.uint32) self.empty_hash_value = b'\x00\x00\x00\x00' \ + empty_hash_value.tobytes() self.empty_hash_table_id = int(MAX_HASH % self.union_find_parallel_num)
[docs] def calc_minhash(self, text_list: pa.Array, uid_list: List) -> pa.Table: pairs = {} for text, uid in zip(text_list, uid_list): text = text.as_py() if self.lowercase: text = text.lower() if self.ignore_pattern: text = self.ignore_pattern.sub('', text) tokens = self.tokenization_func(text) if len(tokens) > 0: hv = np.array([sha1_hash32(token) for token in tokens], dtype=np.uint64) phv = ((hv[:, None] * self.perm_a[None, :] + self.perm_b) % MERSENNE_PRIME).astype(np.uint32) hash_values = phv.min(axis=0) for i, (start, end) in enumerate(self.hash_ranges): hash_value = i.to_bytes(4, 'big') \ + hash_values[start:end].tobytes() hash_table_id = hash_values[start] \ % self.union_find_parallel_num if hash_table_id not in pairs: pairs[hash_table_id] = [] pairs[hash_table_id].append((hash_value, uid)) else: if self.empty_hash_table_id not in pairs: pairs[self.empty_hash_table_id] = [] pairs[self.empty_hash_table_id].append( (self.empty_hash_value, uid)) result_refs = [] for i, p in pairs.items(): if len(result_refs) > self.max_pending_filter_tasks: ready_refs, result_refs = ray.wait( result_refs, num_returns=self.num_filter_task_returns) ray.get(ready_refs) result_refs.append( self.union_find_list[i].add_key_value_pairs.remote(p)) ray.get(result_refs)
[docs] def merge_op_batch(self, object_refs): results = [] while object_refs: ready_refs, object_refs = ray.wait(object_refs, num_returns=min( self.merge_batch_size, len(object_refs))) results.extend(ray.get(ready_refs)) return results
[docs] def merge(self): self.merge_op_batch([ union_find.edge_redistribution.remote() for union_find in self.union_find_list ]) while any( self.merge_op_batch([ union_find.balanced_union_find.remote() for union_find in self.union_find_list ])): self.merge_op_batch([ union_find.communication.remote() for union_find in self.union_find_list ]) self.merge_op_batch([ union_find.squeeze.remote() for union_find in self.union_find_list ])
[docs] def filter_with_union_find(self, samples: pa.Table) -> pa.Table: query_dict = {} for idx, uid in enumerate(samples[HashKeys.uid]): uid = uid.as_py() hash_id = uid // BATCH_SIZE % self.union_find_parallel_num if hash_id not in query_dict: query_dict[hash_id] = [] query_dict[hash_id].append((uid, idx)) mask = np.ones(len(samples), dtype=np.bool_) result_refs = [] for hash_id, query in query_dict.items(): if len(result_refs) > self.max_pending_filter_tasks: ready_refs, result_refs = ray.wait( result_refs, num_returns=self.num_filter_task_returns) results = ray.get(ready_refs) for result in results: mask[result] = False del ready_refs result_refs.append( self.union_find_list[hash_id].dup_idx.remote(query)) results = ray.get(result_refs) for result in results: mask[result] = False del query_dict, results columns_to_keep = [ name for name in samples.column_names if name != HashKeys.uid ] return samples.select(columns_to_keep).filter(mask)
[docs] def run(self, dataset): start_time = time.time() id_generator = IdGenerator.remote() def minhash_with_uid(table: pa.Table) -> pa.Table: num_rows = len(table) min_id, max_id = ray.get(id_generator.get_next_id.remote(num_rows)) uid_list = range(min_id, max_id) self.calc_minhash(table[self.text_key], uid_list) new_table = table.append_column(HashKeys.uid, pa.array(list(uid_list))) return new_table tmp_dir = os.path.join(self.work_dir, '.tmp', ray.get_runtime_context().get_job_id()) dataset.map_batches( minhash_with_uid, batch_format='pyarrow', zero_copy_batch=True, ).write_parquet(tmp_dir) dataset = ray.data.read_parquet(tmp_dir) end_time = time.time() logger.info(f'MinHash time = {end_time - start_time}') start_time = time.time() self.merge() end_time = time.time() logger.info(f'merge time = {end_time - start_time}') result = dataset.map_batches( self.filter_with_union_find, batch_format='pyarrow', zero_copy_batch=True, ) return result