Source code for data_juicer.ops.mapper.generate_instruction_mapper

import json
import random
import re
from typing import Dict, Optional

from loguru import logger
from pydantic import PositiveInt

from data_juicer.utils.lazy_loader import LazyLoader
from data_juicer.utils.model_utils import get_model, prepare_model

from ..base_op import OPERATORS, UNFORKABLE, Mapper

torch = LazyLoader('torch', 'torch')
vllm = LazyLoader('vllm', 'vllm')
rouge = LazyLoader('rouge', 'rouge')

DEFAULT_PROMPT_TEMPLATE = """
请你仔细观察多个示例数据的输入和输出,按照你的理解,总结出相应规矩,然后写出一个新的【问题】和【回答】。注意,新生成的【问题】和【回答】需要满足如下要求:
1. 生成的【问题】和【回答】不能与输入的【问题】和【回答】一致,但是需要保持格式相同。
2. 生成的【问题】不一定要局限于输入【问题】的话题或领域,生成的【回答】需要正确回答生成的【问题】。
3. 提供的【问题】和【回答】可能是多轮对话,生成的【问题】和【回答】也可以是多轮,但是需要保持格式相同。
4. 生成的【问题】和【回答】必须成对出现,而且【问题】需要在【回答】之前。
{augmented_data}
"""
QA_EXTRACTION_PATTERN = r'【问题】\s*(.*?)\s*【回答】\s*(.*?)\s*(?=【问题】|$)'
EXAMPLE_TEMPLATE = '\n如下是一条示例数据:\n\n{qa_pairs}'
QA_PAIR_TEMPLATE = '【问题】\n{}\n【回答】\n{}\n'

OP_NAME = 'generate_instruction_mapper'


# TODO: Extend LLM-based OPs into API-based implementation.
[docs]@UNFORKABLE.register_module(OP_NAME) @OPERATORS.register_module(OP_NAME) class GenerateInstructionMapper(Mapper): """Mapper to generate new instruction text data. You should configure an empty dataset in your yaml config file: ``` generated_dataset_config: type: 'EmptyFormatter' # use `RayEmptyFormatter` when enable ray length: ${The number of generated samples} feature_keys: ${text key} ``` The number of samples generated is determined by the length of the empty dataset. """ _accelerator = 'cuda'
[docs] def __init__(self, hf_model: str = 'Qwen/Qwen-7B-Chat', seed_file: str = '', instruct_num: PositiveInt = 3, trust_remote_code: bool = False, similarity_threshold: float = 0.7, prompt_template: Optional[str] = None, qa_pair_template: Optional[str] = None, example_template: Optional[str] = None, qa_extraction_pattern: Optional[str] = None, enable_vllm: bool = True, tensor_parallel_size: Optional[int] = None, max_model_len: Optional[int] = None, max_num_seqs: int = 256, sampling_params: Dict = {}, *args, **kwargs): """ Initialization method. :param hf_model: Hugginface model id. :param seed_file: Seed file path, chatml format. :param instruct_num: The number of instruction samples. Randomly select N samples from "seed_file" and put them into prompt as instruction samples. :param trust_remote_code: passed to transformers :param similarity_threshold: The similarity score threshold between the generated samples and the seed samples. Range from 0 to 1. Samples with similarity score less than this threshold will be kept. :param prompt_template: Prompt template for generate samples. Please make sure the template contains "{augmented_data}", which corresponds to the augmented samples. :param qa_pair_template: Prompt template for generate question and answer pair description. Please make sure the template contains two "{}" to format question and answer. Default: '【问题】\n{}\n【回答】\n{}\n'. :param example_template: Prompt template for generate examples. Please make sure the template contains "{qa_pairs}", which corresponds to the question and answer pair description generated by param `qa_pair_template`. Default: '\n如下是一条示例数据:\n\n{qa_pairs}' :param qa_extraction_pattern: Regular expression pattern for parsing question and answer from model response. :param enable_vllm: Whether to use vllm for inference acceleration. :param tensor_parallel_size: It is only valid when enable_vllm is True. The number of GPUs to use for distributed execution with tensor parallelism. :param max_model_len: It is only valid when enable_vllm is True. Model context length. If unspecified, will be automatically derived from the model config. :param max_num_seqs: It is only valid when enable_vllm is True. Maximum number of sequences to be processed in a single iteration. :param sampling_params: Sampling parameters for text generation. e.g {'temperature': 0.9, 'top_p': 0.95} :param args: extra args :param kwargs: extra args """ super().__init__(*args, **kwargs) self.num_proc = 1 if not seed_file: raise ValueError( 'Please provide `seed_file` in chatml format.' 'Example: data-juicer/demos/data/demo-dataset-chatml.jsonl') self.instruct_num = instruct_num self.similarity_threshold = similarity_threshold self.similarity_type = 'rouge_l' if prompt_template is None: prompt_template = DEFAULT_PROMPT_TEMPLATE if qa_pair_template is None: qa_pair_template = QA_PAIR_TEMPLATE if example_template is None: example_template = EXAMPLE_TEMPLATE if qa_extraction_pattern is None: qa_extraction_pattern = QA_EXTRACTION_PATTERN self.prompt_template = prompt_template self.qa_pair_template = qa_pair_template self.example_template = example_template self.qa_extraction_pattern = qa_extraction_pattern self.enable_vllm = enable_vllm if enable_vllm: assert torch.cuda.device_count() >= 1, 'must be executed in CUDA' if not tensor_parallel_size: tensor_parallel_size = torch.cuda.device_count() logger.info(f'Set tensor_parallel_size to \ {tensor_parallel_size} for vllm.') self.model_key = prepare_model( model_type='vllm', pretrained_model_name_or_path=hf_model, trust_remote_code=trust_remote_code, tensor_parallel_size=tensor_parallel_size, max_model_len=max_model_len, max_num_seqs=max_num_seqs) self.sampling_params = vllm.SamplingParams(**sampling_params) else: self.model_key = prepare_model( model_type='huggingface', pretrained_model_name_or_path=hf_model, trust_remote_code=trust_remote_code) self.sampling_params = sampling_params self.seed_qa_samples = self.load_seed_qa_samples(seed_file) if len(self.seed_qa_samples) == 0: raise ValueError('No QA data was parsed from the seed file!') self.reference_samples = [ '\n'.join(['\n'.join(qa_pair) for qa_pair in qa_pairs]) + '\n' for qa_pairs in self.seed_qa_samples ]
[docs] def load_seed_qa_samples(self, seed_file): """Load QA pairs from chatml format file.""" qa_samples = [] with open(seed_file) as f: lines = f.readlines() for line in lines: line = line.strip() qa_pairs = self.parse_chatml_str(line) if len(qa_pairs) > 0: qa_samples.append(qa_pairs) return qa_samples
[docs] def build_prompt(self, qa_samples, prompt_template): def format_qa_pairs(qa_pairs): return ''.join([ self.qa_pair_template.format(q, a) for q, a in qa_pairs if q and a ]) body_fragments = [ self.example_template.format(qa_pairs=format_qa_pairs(qa_pairs)) for qa_pairs in qa_samples ] body = ''.join(body_fragments) return prompt_template.format(augmented_data=body)
[docs] def parse_chatml_str(self, input_str): user_input = None assistant_output = None qa_pairs = [] data = json.loads(input_str) for message in data['messages']: role = message['role'] content = message['content'] if role == 'user': user_input = content elif role == 'assistant': assistant_output = content qa_pairs.append((user_input, assistant_output)) return qa_pairs
[docs] def parse_response(self, response_str): pattern = self.qa_extraction_pattern matches = re.findall(pattern, response_str, re.DOTALL) response_str = '' out_qa_pairs = [] for i, match in enumerate(matches): question, answer = match question = question.strip() answer = answer.strip() out_qa_pairs.append((question, answer)) response_str += question + '\n' + answer + '\n' if len(out_qa_pairs) == 0: logger.error('Parse model response error! ' 'No data generated for the current response!') return out_qa_pairs, response_str
[docs] def max_rouge_l_score(self, reference, candidates): r = rouge.Rouge() max_score = 0.0 for candidate in candidates: scores = r.get_scores(candidate, reference) rouge_l_score = scores[0]['rouge-l']['f'] if rouge_l_score > max_score: max_score = rouge_l_score return max_score
[docs] def process_single(self, sample=None, rank=None): model, processor = get_model(self.model_key, rank=rank) random_qa_samples = random.sample(self.seed_qa_samples, self.instruct_num) input_prompt = self.build_prompt(random_qa_samples, self.prompt_template) if self.enable_vllm: response = model.generate([input_prompt], self.sampling_params) response_str = response[0].outputs[0].text else: inputs = processor(input_prompt, return_tensors='pt').to(model.device) output_ids = model.generate(**inputs, **self.sampling_params) # remove the input prompt from the output output_ids = output_ids[:, inputs.data['input_ids'].shape[1]:] response_str = processor.decode(output_ids.cpu()[0], skip_special_tokens=True) message_list = [] out_qa_pairs, response_str = self.parse_response(response_str) if not response_str: return {self.text_key: json.dumps({'messages': message_list})} if self.similarity_type == 'rouge_l': sim_score = self.max_rouge_l_score(response_str, self.reference_samples) else: raise ValueError( f'Not support similarity type "{self.similarity_type}"!') if sim_score <= self.similarity_threshold: for question, answer in out_qa_pairs: message_list.append({'role': 'user', 'content': question}) message_list.append({'role': 'assistant', 'content': answer}) else: logger.info('Filter this generated sample due to similarity.') return { self.text_key: json.dumps({'messages': message_list}, ensure_ascii=False) }