Source code for data_juicer.ops.mapper.nlpaug_en_mapper

from copy import deepcopy

from loguru import logger
from pydantic import PositiveInt

from data_juicer.utils.lazy_loader import LazyLoader

from ..base_op import OPERATORS, Mapper

nlpaug = LazyLoader('nlpaug', 'nlpaug')
nac = LazyLoader('nac', 'nlpaug.augmenter.char')
naw = LazyLoader('naw', 'nlpaug.augmenter.word')
naf = LazyLoader('naf', 'nlpaug.flow')

OP_NAME = 'nlpaug_en_mapper'


[docs]@OPERATORS.register_module(OP_NAME) class NlpaugEnMapper(Mapper): """Mapper to simply augment samples in English based on nlpaug library.""" _batched_op = True
[docs] def __init__(self, sequential: bool = False, aug_num: PositiveInt = 1, keep_original_sample: bool = True, delete_random_word: bool = False, swap_random_word: bool = False, spelling_error_word: bool = False, split_random_word: bool = False, keyboard_error_char: bool = False, ocr_error_char: bool = False, delete_random_char: bool = False, swap_random_char: bool = False, insert_random_char: bool = False, *args, **kwargs): """ Initialization method. All augmentation methods use default parameters in default. We recommend you to only use 1-3 augmentation methods at a time. Otherwise, the semantics of samples might be changed significantly. :param sequential: whether combine all augmentation methods to a sequence. If it's True, a sample will be augmented by all opened augmentation methods sequentially. If it's False, each opened augmentation method would generate its augmented samples independently. :param aug_num: number of augmented samples to be generated. If `sequential` is True, there will be total aug_num augmented samples generated. If it's False, there will be (aug_num * #opened_aug_method) augmented samples generated. :param keep_original_sample: whether to keep the original sample. If it's set to False, there will be only generated texts in the final datasets and the original texts will be removed. It's True in default. :param delete_random_word: whether to open the augmentation method of deleting random words from the original texts. e.g. "I love LLM" --> "I LLM" :param swap_random_word: whether to open the augmentation method of swapping random contiguous words in the original texts. e.g. "I love LLM" --> "Love I LLM" :param spelling_error_word: whether to open the augmentation method of simulating the spelling error for words in the original texts. e.g. "I love LLM" --> "Ai love LLM" :param split_random_word: whether to open the augmentation method of splitting words randomly with whitespaces in the original texts. e.g. "I love LLM" --> "I love LL M" :param keyboard_error_char: whether to open the augmentation method of simulating the keyboard error for characters in the original texts. e.g. "I love LLM" --> "I ;ov4 LLM" :param ocr_error_char: whether to open the augmentation method of simulating the OCR error for characters in the original texts. e.g. "I love LLM" --> "I 10ve LLM" :param delete_random_char: whether to open the augmentation method of deleting random characters from the original texts. e.g. "I love LLM" --> "I oe LLM" :param swap_random_char: whether to open the augmentation method of swapping random contiguous characters in the original texts. e.g. "I love LLM" --> "I ovle LLM" :param insert_random_char: whether to open the augmentation method of inserting random characters into the original texts. e.g. "I love LLM" --> "I ^lKove LLM" :param args: extra args :param kwargs: extra args """ super().__init__(*args, **kwargs) self.aug_num = aug_num if aug_num >= 10: logger.warning(f'Relatively large augmentation number [{aug_num}]' f' might generate large number of new samples and ' f'requires more memory and disk space.') self.sequential = sequential self.keep_original_sample = keep_original_sample aug_pipeline = [] # word level Action = nlpaug.util.Action if delete_random_word: aug_pipeline.append(naw.RandomWordAug(action=Action.DELETE)) if swap_random_word: aug_pipeline.append(naw.RandomWordAug(action=Action.SWAP)) if spelling_error_word: aug_pipeline.append(naw.SpellingAug()) if split_random_word: aug_pipeline.append(naw.SplitAug()) # char level if keyboard_error_char: aug_pipeline.append(nac.KeyboardAug()) if ocr_error_char: aug_pipeline.append(nac.OcrAug()) if delete_random_char: aug_pipeline.append(nac.RandomCharAug(action=Action.DELETE)) if swap_random_char: aug_pipeline.append(nac.RandomCharAug(action=Action.SWAP)) if insert_random_char: aug_pipeline.append(nac.RandomCharAug(action=Action.INSERT)) if self.sequential: self.aug = naf.Sequential(aug_pipeline) else: self.aug = aug_pipeline
[docs] def process_batched(self, samples): # no augmentation methods are opened if len(self.aug) == 0: if self.keep_original_sample: return samples else: return {key: [] for key in samples} texts_to_aug = samples[self.text_key][0] # batch_size = 1 res_samples = deepcopy(samples) # get augmented texts if self.sequential: aug_texts = self.aug.augment(texts_to_aug, n=self.aug_num) else: # apply each aug method to generate several augmented texts aug_texts = [] for aug_method in self.aug: aug_texts += aug_method.augment(texts_to_aug, n=self.aug_num) # add augmented samples to the batch with other replicate fields if self.keep_original_sample: res_samples[self.text_key] += aug_texts else: res_samples[self.text_key] = aug_texts # add other replicate fields for key in res_samples: if key != self.text_key: res_samples[key] = res_samples[key] * \ len(res_samples[self.text_key]) return res_samples