Configuration Guide
This section provides a detailed description of the configuration files used in Trinity-RFT.
Overview
The configuration for Trinity-RFT is defined in a YAML
file and organized into multiple sections based on different modules. Here’s an example of a basic configuration file:
project: Trinity-RFT
name: example
mode: both
checkpoint_root_dir: /PATH/TO/CHECKPOINT
algorithm:
# Algorithm-related parameters
...
model:
# Model-specific configurations
...
cluster:
# Cluster node and GPU settings
...
buffer:
# Data buffer configurations
...
explorer:
# Explorer-related settings (rollout models, workflow runners)
...
trainer:
# Trainer-specific parameters
...
synchronizer:
# Model weight synchronization settings
...
monitor:
# Monitoring configurations (e.g., WandB or TensorBoard)
...
data_processor:
# Preprocessing data settings
...
Each of these sections will be explained in detail below.
Note
For additional details about specific parameters not covered here, please refer to the source code.
Global Configuration
These are general settings that apply to the entire experiment.
project: Trinity-RFT
name: example
mode: both
checkpoint_root_dir: /PATH/TO/CHECKPOINT
project
: The name of the project.name
: The name of the current experiment.mode
: Running mode of Trinity-RFT. Options include:both
: Launches both the trainer and explorer (default).train
: Only launches the trainer.explore
: Only launches the explorer.bench
: Used for benchmarking.
checkpoint_root_dir
: Root directory where all checkpoints and logs will be saved. Checkpoints for this experiment will be stored in<checkpoint_root_dir>/<project>/<name>/
.ray_namespace
: Namespace for the modules launched in the current experiment. If not specified, it will be set to<project>/<name>
.
Algorithm Configuration
Specifies the algorithm type and its related hyperparameters.
algorithm:
algorithm_type: grpo
repeat_times: 8
# The following parameters are optional
# If not specified, they will automatically be set based on the `algorithm_type`
sample_strategy: "default"
advantage_fn: "ppo"
kl_penalty_fn: "none"
kl_loss_fn: "k2"
entropy_loss_fn: "default"
algorithm_type
: Type of reinforcement learning algorithm. Supported types:ppo
,grpo
,opmd
,dpo
,sft
,mix
.repeat_times
: Number of times each task is repeated. Default is1
. Indpo
, this is automatically set to2
. Some algorithms such as GRPO and OPMD requirerepeat_times
> 1.sample_strategy
: The sampling strategy used for loading experiences from experience buffer.advantage_fn
: The advantage function used for computing advantages.kl_penalty_fn
: The KL penalty function used for computing KL penalty applied in reward.kl_loss_fn
: The KL loss function used for computing KL loss.entropy_loss_fn
: The entropy loss function used for computing entropy loss.
Monitor Configuration
Used to log training metrics during execution.
monitor:
monitor_type: wandb
enable_ray_timeline: False
monitor_type
: Type of monitoring system. Options:wandb
: Logs to Weights & Biases. Requires logging in and settingWANDB_API_KEY
. Project and run names match theproject
andname
fields in global configs.tensorboard
: Logs to TensorBoard. Files are saved under<checkpoint_root_dir>/<project>/<name>/monitor/tensorboard
.
enable_ray_timeline
: Whether to export the ray timeline. If set toTrue
, atimeline.json
file will be exported to<checkpoint_root_dir>/<project>/<name>/monitor
. You can view the timeline file in Chrome at chrome://tracing.
Model Configuration
Defines the model paths and token limits.
model:
model_path: /PATH/TO/MODEL/
critic_model_path: ''
max_prompt_tokens: 4096
max_response_tokens: 16384
model_path
: Path to the model being trained.critic_model_path
: Optional path to a separate critic model. If empty, defaults tomodel_path
.max_prompt_tokens
: Maximum number of tokens allowed in input prompts.max_response_tokens
: Maximum number of tokens allowed in generated responses.
Cluster Configuration
Defines how many nodes and GPUs per node are used.
cluster:
node_num: 1
gpu_per_node: 8
node_num
: Total number of compute nodes.gpu_per_node
: Number of GPUs available per node.
Buffer Configuration
Configures the data buffers used by the explorer and trainer.
buffer:
batch_size: 32
total_epochs: 100
explorer_input:
taskset:
...
eval_tasksets:
...
explorer_output:
...
trainer_input:
experience_buffer:
...
sft_warmup_dataset:
...
default_workflow_type: 'math_workflow'
default_reward_fn_type: 'countdown_reward'
batch_size
: Number of tasks used per training step. Please do not multiply this value by thealgorithm.repeat_times
manually.total_epochs
: Total number of training epochs.
Explorer Input
Defines the dataset(s) used by the explorer for training and evaluation.
buffer:
...
explorer_input:
taskset:
name: countdown_train
storage_type: file
path: /PATH/TO/DATA
split: train
format:
prompt_key: 'question'
response_key: 'answer'
rollout_args:
temperature: 1.0
default_workflow_type: 'math_workflow'
default_reward_fn_type: 'countdown_reward'
eval_tasksets:
- name: countdown_eval
storage_type: file
path: /PATH/TO/DATA
split: test
format:
prompt_key: 'question'
response_key: 'answer'
rollout_args:
temperature: 0.1
default_workflow_type: 'math_workflow'
default_reward_fn_type: 'countdown_reward'
buffer.explorer_input.taskset
: Task dataset used for training exploration policies.buffer.explorer_input.eval_taskset
: List of task datasets used for evaluation.
The configuration for each task dataset is defined as follows:
name
: Name of the dataset. This name will be used as the Ray actor’s name, so it must be unique.storage_type
: How the dataset is stored. Options:file
,queue
,sql
.file
: The dataset is stored injsonl
/parquet
files. The data file organization is required to meet the huggingface standard. We recommand using this storage type for most cases.queue
: The dataset is stored in a queue. The queue is a simple FIFO queue that stores the task dataset. Do not use this storage type for task dataset unless you know what you are doing.sql
: The dataset is stored in a SQL database. This type is unstable and will be optimized in the future versions.
path
: The path to the task dataset.For
file
storage type, the path points to the directory that contains the task dataset files.For
queue
storage type, the path is optional. You can back up the data in the queue by specifying a sqlite database path here.For
sql
storage type, the path points to the sqlite database file.
subset_name
: The subset name of the task dataset. Default isNone
.split
: The split of the task dataset. Default istrain
.format
: Defines keys for prompts and responses in the dataset.prompt_key
: Specifies which column in the dataset contains the prompt data.response_key
: Specifies which column in the dataset contains the response data.
rollout_args
: The parameters for rollout.temperature
: The temperature for sampling.
default_workflow_type
: Type of workflow logic applied to this dataset. If not specified, thebuffer.default_workflow_type
is used.default_reward_fn_type
: Reward function used during exploration. If not specified, thebuffer.default_reward_fn_type
is used.workflow_args
: A dictionary of arguments used to supplement dataset-level parameters.
Explorer Output
In explore
mode, since there is no trainer, users can configure an experience buffer via buffer.explorer_output
, rather than using buffer.trainer_input
, which will be introduced in the next section.
For
both
andtrain
modes, users should usebuffer.trainer_input
instead ofbuffer.explorer_output
.
buffer:
...
explorer_output:
name: countdown_buffer
storage_type: queue
path: sqlite:///countdown_buffer.db
wrap_in_ray: True
name
: The name of the experience buffer. This name will be used as the Ray actor’s name, so it must be unique.storage_type
: The storage type for the experience buffer.queue
: Experience data is stored in a queue. This storage type is recommended for most use cases.sql
: Experience data is stored in a SQL database. If your database only supports local access (e.g., SQLite), setwrap_in_ray
toTrue
to wrap the database in a Ray actor, enabling remote access from other nodes.file
: Experience data is stored in a JSON file. This storage type should be used only for debugging purposes inexplore
mode.
path
: The path to the experience buffer.For
queue
storage type, this field is optional. You can specify a SQLite database or JSON file path here to back up the queue data.For
file
storage type, the path points to the directory containing the dataset files.For
sql
storage type, the path points to the SQLite database file.
wrap_in_ray
: Whether to wrap the experience buffer in a Ray actor. Only take effect whenstorage_type
issql
orfile
. Thequeue
storage always uses a Ray actor.
Trainer Input
Defines the experience buffer and optional SFT warm-up dataset.
buffer:
...
trainer_input:
experience_buffer:
name: countdown_buffer
storage_type: queue
path: sqlite:///countdown_buffer.db
sft_warmup_dataset:
name: warmup_data
storage_type: file
path: /PATH/TO/WARMUP_DATA
format:
prompt_key: 'question'
response_key: 'answer'
sft_warmup_steps: 0
experience_buffer
: Experience buffer used by the trainer, which is logically equivalent tobuffer.explorer_output
.sft_warmup_dataset
: Optional dataset used for pre-training (SFT warmup).sft_warmup_steps
: Number of steps to use SFT warm-up before RL begins.
Explorer Configuration
Controls the rollout models and workflow execution.
explorer:
name: explorer
runner_num: 32
rollout_model:
engine_type: vllm_async
engine_num: 1
tensor_parallel_size: 1
auxiliary_models:
- model_path: /PATH/TO/MODEL
tensor_parallel_size: 1
name
: Name of the explorer. This name will be used as the Ray actor’s name, so it must be unique.runner_num
: Number of parallel workflow runners.rollout_model.engine_type
: Type of inference engine. Options:vllm_async
(recommended),vllm
.rollout_model.engine_num
: Number of inference engines.rollout_model.tensor_parallel_size
: Degree of tensor parallelism.auxiliary_models
: Additional models used for custom workflows.
Synchronizer Configuration
Controls how model weights are synchronized between trainer and explorer.
synchronizer:
sync_method: 'nccl'
sync_interval: 10
sync_offset: 0
sync_timeout: 1200
sync_method
: Method of synchronization. Options:nccl
: Uses NCCL for fast synchronization. Supported forboth
mode.checkpoint
: Loads latest model from disk. Supported fortrain
,explore
, orbench
mode.
sync_interval
: Interval (in steps) of model weight synchronization between trainer and explorer.sync_offset
: Offset (in steps) of model weight synchronization between trainer and explorer. The explorer can runsync_offset
steps before the trainer starts training.sync_timeout
: Timeout duration for synchronization.
Trainer Configuration
Specifies the backend and behavior of the trainer.
trainer:
name: trainer
trainer_type: 'verl'
save_interval: 100
trainer_config_path: 'examples/ppo_countdown/train_countdown.yaml'
trainer_config: null
name
: Name of the trainer. This name will be used as the Ray actor’s name, so it must be unique.trainer_type
: Trainer backend implementation. Currently only supportsverl
.save_interval
: Frequency (in steps) at which to save model checkpoints.trainer_config_path
: The path to the trainer configuration file.trainer_config
: The trainer configuration provided inline. Only one oftrainer_config_path
andtrainer_config
should be specified.
Data Processor Configuration
Configures preprocessing and data cleaning pipelines.
data_processor:
source_data_path: /PATH/TO/DATASET
load_kwargs:
split: 'train'
format:
prompt_key: 'question'
response_key: 'answer'
dj_config_path: 'tests/test_configs/active_iterator_test_dj_cfg.yaml'
clean_strategy: 'iterative'
db_url: 'postgresql://{username}@localhost:5432/{db_name}'
source_data_path
: Path to the task dataset.load_kwargs
: Arguments passed to HuggingFace’sload_dataset()
.dj_config_path
: Path to Data-Juicer configuration for cleaning.clean_strategy
: Strategy for iterative data cleaning.db_url
: Database URL if using SQL backend.
veRL Trainer Configuration (Advanced)
For advanced users working with the verl
trainer backend. This includes fine-grained settings for actor/critic models, optimizer parameters, and training loops.
For full parameter meanings, refer to the veRL documentation.
actor_rollout_ref:
hybrid_engine: True
model:
external_lib: null
override_config: { }
enable_gradient_checkpointing: True
use_remove_padding: True
actor:
strategy: fsdp # This is for backward-compatibility
ppo_mini_batch_size: 128
# ppo_micro_batch_size: 8 # will be deprecated, use ppo_micro_batch_size_per_gpu
ppo_micro_batch_size_per_gpu: 4
use_dynamic_bsz: True
ppo_max_token_len_per_gpu: 16384 # n * ${data.max_prompt_length} + ${data.max_response_length}
grad_clip: 1.0
ppo_epochs: 1
shuffle: False
ulysses_sequence_parallel_size: 1 # sp size
checkpoint:
contents: ['model', 'hf_model', 'optimizer', 'extra'] # with 'hf_model' you can save whole model as hf format, now only use sharded model checkpoint to save space
optim:
lr: 1e-6
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
# min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
fsdp_config:
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
param_offload: False
optimizer_offload: False
fsdp_size: -1
ref:
fsdp_config:
param_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
# log_prob_micro_batch_size: 4 # will be deprecated, use log_prob_micro_batch_size_per_gpu
log_prob_micro_batch_size_per_gpu: 8
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
critic:
strategy: fsdp
optim:
lr: 1e-5
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
# min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
model:
override_config: { }
external_lib: ${actor_rollout_ref.model.external_lib}
enable_gradient_checkpointing: True
use_remove_padding: False
fsdp_config:
param_offload: False
optimizer_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
fsdp_size: -1
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
ppo_micro_batch_size_per_gpu: 8
forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
ulysses_sequence_parallel_size: 1 # sp size
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
shuffle: ${actor_rollout_ref.actor.shuffle}
grad_clip: 1.0
cliprange_value: 0.5
trainer:
balance_batch: True
# total_training_steps: null
# auto: find the last ckpt to resume. If can't find, start from scratch
resume_mode: auto # or auto or resume_path if
resume_from_path: ""
critic_warmup: 0
default_hdfs_dir: null
remove_previous_ckpt_in_save: False
del_local_ckpt_after_load: False
val_before_train: False
max_actor_ckpt_to_keep: 5
max_critic_ckpt_to_keep: 5
actor_rollout_ref.model.enable_gradient_checkpointing
: Whether to enable gradient checkpointing, which will reduce GPU memory usage.actor_rollout_ref.model.use_remove_padding
: Whether to remove pad tokens, which will reduce training time.actor_rollout_ref.actor.use_dynamic_bsz
: Whether to reorganize the batch data, specifically to splice the shorter data to reduce the batch size in the actual training process.actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu
: Batch size for one GPU in one forward pass.actor_rollout_ref.actor.ulysses_sequence_parallel_size
: Ulysses sequence parallel size.actor_rollout_ref.actor.optim.lr
: Learning rate for actor model.actor_rollout_ref.actor.optim.lr_warmup_steps_ratio
: Ratio of warmup steps for learning rate.actor_rollout_ref.actor.optim.warmup_style
: Warmup style for learning rate.actor_rollout_ref.actor.optim.total_training_steps
: Total training steps for actor model.actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu
: Batch size for one GPU in one reference model forward pass.critic.model.enable_gradient_checkpointing
: Whether to enable gradient checkpointing, which will reduce GPU memory usage.critic.model.use_remove_padding
: Whether to remove pad tokens, which will reduce training time.critic.optim.lr
: Learning rate for critic model.critic.optim.lr_warmup_steps_ratio
: Ratio of warmup steps for learning rate.critic.optim.warmup_style
: Warmup style for learning rate.critic.optim.total_training_steps
: Total training steps for critic model.critic.ppo_micro_batch_size_per_gpu
: Batch size for one GPU in one critic model forward pass.critic.ulysses_sequence_parallel_size
: Ulysses sequence parallel size.critic.grad_clip
: Gradient clip for critic model training.critic.cliprange_value
: Used for compute value loss.trainer.balance_batch
: Whether to balance batch size between GPUs during training.trainer.resume_mode
: Resume mode for training. Supportdisable
,auto
andresume_path
.trainer.resume_from_path
: Path to resume from.trainer.critic_warmup
: The number of steps to train the critic model before actual policy learning.trainer.default_hdfs_dir
: Default HDFS directory for saving checkpoints.trainer.remove_previous_ckpt_in_save
: Whether to remove previous checkpoints in save.trainer.del_local_ckpt_after_load
: Whether to delete local checkpoints after loading.trainer.max_actor_ckpt_to_keep
: Maximum number of actor checkpoints to keep.trainer.max_critic_ckpt_to_keep
: Maximum number of critic checkpoints to keep.