Source code for trinity.trainer.verl.dp_actor

# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023-2024 SGLang Team
# Copyright 2025 ModelBest Inc. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Single Process Actor.
Modified from https://github.com/volcengine/verl/blob/v0.4.1/verl/workers/actor/dp_actor.py
"""

import logging
import os

import torch
from torch import nn
from verl import DataProto
from verl.utils.debug import GPUMemoryLogger
from verl.utils.device import get_device_id
from verl.utils.py_functional import append_to_dict
from verl.utils.seqlen_balancing import prepare_dynamic_batch
from verl.workers.actor.dp_actor import DataParallelPPOActor as DPActor

from trinity.algorithm import ENTROPY_LOSS_FN, KL_FN, POLICY_LOSS_FN
from trinity.algorithm.entropy_loss_fn.entropy_loss_fn import DummyEntropyLossFn
from trinity.algorithm.kl_fn.kl_fn import DummyKLFn
from trinity.algorithm.utils import prefix_metrics
from trinity.common.config import AlgorithmConfig

__all__ = ["DataParallelPPOActor"]

logger = logging.getLogger(__file__)
logger.setLevel(os.getenv("VERL_LOGGING_LEVEL", "WARN"))


[docs] class DataParallelPPOActor(DPActor):
[docs] def __init__( self, config, actor_module: nn.Module, actor_optimizer: torch.optim.Optimizer = None ): """When optimizer is None, it is Reference Policy""" super().__init__(config, actor_module, actor_optimizer) self.policy_loss_fn = None self.kl_loss_fn = None self.entropy_loss_fn = None
[docs] def set_algorithm(self, algorithm_config: AlgorithmConfig): self.policy_loss_fn = POLICY_LOSS_FN.get(algorithm_config.policy_loss_fn)( backend="verl", **algorithm_config.policy_loss_fn_args ) self.kl_loss_fn = KL_FN.get(algorithm_config.kl_loss_fn)(**algorithm_config.kl_loss_fn_args) self.entropy_loss_fn = ENTROPY_LOSS_FN.get(algorithm_config.entropy_loss_fn)( **algorithm_config.entropy_loss_fn_args )
@GPUMemoryLogger(role="dp actor", logger=logger) def update_policy(self, data: DataProto): # noqa: C901 # make sure we are in training mode self.actor_module.train() temperature = data.meta_info[ "temperature" ] # temperature must be in the data.meta_info to avoid silent error select_keys = [ "input_ids", "position_ids", "attention_mask", "responses", "response_mask", ] select_keys.extend(self.policy_loss_fn.select_keys) if not isinstance(self.kl_loss_fn, DummyKLFn): select_keys.append("ref_log_prob") select_keys = list(set(select_keys)) has_multi_modal_inputs = "multi_modal_inputs" in data.non_tensor_batch.keys() non_tensor_select_keys = ["multi_modal_inputs"] if has_multi_modal_inputs else [] data = data.select(batch_keys=select_keys, non_tensor_batch_keys=non_tensor_select_keys) mini_batches = data.split(self.config.ppo_mini_batch_size) metrics = {} for _ in range(self.config.ppo_epochs): for batch_idx, mini_batch in enumerate(mini_batches): if self.config.use_dynamic_bsz: max_token_len = ( self.config.ppo_max_token_len_per_gpu * self.ulysses_sequence_parallel_size ) micro_batches, _ = prepare_dynamic_batch( mini_batch, max_token_len=max_token_len ) else: self.gradient_accumulation = ( self.config.ppo_mini_batch_size // self.config.ppo_micro_batch_size_per_gpu ) micro_batches = mini_batch.split(self.config.ppo_micro_batch_size_per_gpu) self.actor_optimizer.zero_grad() for micro_batch in micro_batches: micro_batch_metrics = {} model_inputs = { **micro_batch.batch.to(get_device_id()), **micro_batch.non_tensor_batch, } response_mask = model_inputs["response_mask"] # all return: (bsz, response_length) calculate_entropy = self.entropy_loss_fn != DummyEntropyLossFn entropy, log_prob = self._forward_micro_batch( micro_batch=model_inputs, temperature=temperature, calculate_entropy=calculate_entropy, ) pg_loss, pg_loss_metrics = self.policy_loss_fn( # type: ignore logprob=log_prob, **model_inputs ) prefix_metrics( src_metrics=pg_loss_metrics, prefix="actor", dst_metrics=micro_batch_metrics ) # compute entropy loss from entropy entropy_loss, entropy_loss_metrics = self.entropy_loss_fn( # type: ignore entropy=entropy, action_mask=response_mask, **model_inputs, ) prefix_metrics( src_metrics=entropy_loss_metrics, prefix="actor", dst_metrics=micro_batch_metrics, ) # compute policy loss policy_loss = pg_loss - entropy_loss kl_loss, kl_loss_metrics = self.kl_loss_fn.calculate_kl_loss( logprob=log_prob, ref_logprob=model_inputs.get("ref_log_prob", None), response_mask=response_mask, ) prefix_metrics( src_metrics=kl_loss_metrics, prefix="actor", dst_metrics=micro_batch_metrics, ) policy_loss = policy_loss + kl_loss if self.config.use_dynamic_bsz: # relative to the dynamic bsz loss = policy_loss * ( response_mask.shape[0] / self.config.ppo_mini_batch_size ) else: loss = policy_loss / self.gradient_accumulation loss.backward() append_to_dict(metrics, micro_batch_metrics) grad_norm = self._optimizer_step() mini_batch_metrics = {"actor/grad_norm": grad_norm.detach().item()} append_to_dict(metrics, mini_batch_metrics) self.actor_optimizer.zero_grad() return metrics