data_juicer.analysis.correlation_analysis module¶
- data_juicer.analysis.correlation_analysis.draw_heatmap(data, row_labels, col_labels, ax=None, cbar_kw=None, cbarlabel='', **kwargs)[source]¶
Create a heatmap from a numpy array and two lists of labels.
- Parameters:
data – A 2D numpy array of shape (M, N).
row_labels – A list or array of length M with the labels for the rows.
col_labels – A list or array of length N with the labels for the columns.
ax – A matplotlib.axes.Axes instance to which the heatmap is plotted. If not provided, use current Axes or create a new one. Optional.
cbar_kw – A dictionary with arguments to matplotlib.Figure.colorbar. Optional.
cbarlabel – The label for the colorbar. Optional.
**kwargs – All other arguments are forwarded to imshow.
- data_juicer.analysis.correlation_analysis.annotate_heatmap(im, data=None, valfmt='{x:.2f}', textcolors=('black', 'white'), threshold=None, **textkw)[source]¶
A function to annotate a heatmap.
- Parameters:
im – The AxesImage to be labeled.
data – Data used to annotate. If None, the image’s data is used. Optional.
valfmt – The format of the annotations inside the heatmap. This should either use the string format method, e.g. “$ {x:.2f}”, or be a matplotlib.ticker.Formatter. Optional.
textcolors – A pair of colors. The first is used for values below a threshold, the second for those above. Optional.
threshold – Value in data units according to which the colors from textcolors are applied. If None (the default) uses the middle of the colormap as separation. Optional.
**kwargs – All other arguments are forwarded to each call to text used to create the text labels.
- data_juicer.analysis.correlation_analysis.is_numeric_list_series(series)[source]¶
Whether a series is a numerical-list column.
- class data_juicer.analysis.correlation_analysis.CorrelationAnalysis(dataset, output_path)[source]¶
Bases:
object
Analyze the correlations among different stats. Only for numerical stats.