data_juicer.ops.deduplicator.document_minhash_deduplicator module

data_juicer.ops.deduplicator.document_minhash_deduplicator.sha1_hash32(data)[source]

Directly taken from datasketch package to avoid dependency.

Parameters:

data (bytes)

Return type:

int

data_juicer.ops.deduplicator.document_minhash_deduplicator.optimal_param(threshold: float, num_perm: int, false_positive_weight: float = 0.5, false_negative_weight: float = 0.5)[source]

Compute the optimal MinHashLSH parameter that minimizes the weighted sum of probabilities of false positive and false negative, taken from datasketch.

Parameters:
  • threshold – float. The threshold for similarity

  • num_perm – int. The number of permutations

  • false_positive_weight – float. The weight of false positive

  • false_negative_weight – float. The weight of false negative

Returns:

Tuple[int, int]. The optimal b and r parameters. The number of bands, and the number of rows per band respectively

class data_juicer.ops.deduplicator.document_minhash_deduplicator.DocumentMinhashDeduplicator(tokenization: str = 'space', window_size: Annotated[int, Gt(gt=0)] = 5, lowercase: bool = True, ignore_pattern: str | None = None, num_permutations: Annotated[int, Gt(gt=0)] = 256, jaccard_threshold: Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Ge(ge=0), Le(le=1)])] = 0.7, num_bands: Annotated[int, Gt(gt=0)] | None = None, num_rows_per_band: Annotated[int, Gt(gt=0)] | None = None, tokenizer_model: str | None = None, *args, **kwargs)[source]

Bases: Deduplicator

Deduplicator to deduplicate samples at document-level using MinHashLSH.

Different from simhash, minhash is stored as bytes, so they won’t be kept in the final dataset.

__init__(tokenization: str = 'space', window_size: Annotated[int, Gt(gt=0)] = 5, lowercase: bool = True, ignore_pattern: str | None = None, num_permutations: Annotated[int, Gt(gt=0)] = 256, jaccard_threshold: Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Ge(ge=0), Le(le=1)])] = 0.7, num_bands: Annotated[int, Gt(gt=0)] | None = None, num_rows_per_band: Annotated[int, Gt(gt=0)] | None = None, tokenizer_model: str | None = None, *args, **kwargs)[source]

Initialization method.

Parameters:
  • tokenization – tokenization method for sample texts. It should be one of [space, punctuation, character, sentencepiece]. For English-like languages, we recommend to use ‘space’, for Chinese-like languages, we recommend to use ‘character’, and for multiple languages, we recommend to use ‘sentencepiece’. If using ‘sentencepiece’, please provided the model path in the ‘tokenizer_model’ field.

  • window_size – window size of shingling

  • lowercase – whether to convert text to lower case first

  • ignore_pattern – whether to ignore sub-strings with specific pattern when computing minhash

  • num_permutations – number of permutations in minhash computing

  • jaccard_threshold – the min jaccard similarity threshold in near-duplicate detection. When the jaccard similarity of two sample texts is >= this threshold, they are regarded as similar samples and this op will only keep one of them after deduplication

  • num_bands – number of bands in LSH. Default it’s None, and it will be determined by an optimal params computation algorithm by minimize the weighted sum of probs of False Positives and False Negatives

  • num_rows_per_band – number of rows in each band in LSH. Default it’s None, and it will be determined by an optimal params computation algorithm

  • tokenizer_model – path for the sentencepiece model, used for sentencepiece tokenization.

compute_hash(sample)[source]

Compute minhash values for the sample.

Parameters:

sample – input sample

Returns:

sample with minhash value.

process(dataset, show_num=0)[source]

For doc-level, dataset –> dataset.

Parameters:
  • dataset – input dataset

  • show_num – number of traced samples used when tracer is open.

Returns:

deduplicated dataset and the sampled duplicate pairs.