data_juicer.ops.filter.image_aesthetics_filter module¶
- class data_juicer.ops.filter.image_aesthetics_filter.ImageAestheticsFilter(hf_scorer_model: str = '', trust_remote_code: bool = False, min_score: float = 0.5, max_score: float = 1.0, any_or_all: str = 'any', *args, **kwargs)[source]¶
Bases:
Filter
Filter to keep samples with aesthetics scores within a specific range.
- __init__(hf_scorer_model: str = '', trust_remote_code: bool = False, min_score: float = 0.5, max_score: float = 1.0, any_or_all: str = 'any', *args, **kwargs)[source]¶
Initialization method.
- Parameters:
hf_scorer_model – Huggingface model name for the aesthetics predictor. By default, we will use ‘shunk031/aesthetics-predictor-v2-sac-logos-ava1-l14-linearMSE’, refer to pypi.org/project/simple-aesthetics-predictor
min_score – Min score for the predicted aesthetics in an image.
max_score – Max score for the predicted aesthetics in an image.
any_or_all – Keep this sample with ‘any’ or ‘all’ strategy of all images. ‘any’: keep this sample if any images meet the condition. ‘all’: keep this sample only if all images meet the condition.
args – Extra positional arguments.
kwargs – Extra keyword arguments.
- compute_stats_single(sample, rank=None, context=False)[source]¶
Compute stats for the sample which is used as a metric to decide whether to filter this sample.
- Parameters:
sample – input sample.
context – whether to store context information of intermediate vars in the sample temporarily.
- Returns:
sample with computed stats