data_juicer.analysis

class data_juicer.analysis.ColumnWiseAnalysis(dataset, output_path, overall_result=None, save_stats_in_one_file=True)[源代码]

基类:object

Apply analysis on each column of stats respectively.

__init__(dataset, output_path, overall_result=None, save_stats_in_one_file=True)[源代码]

Initialization method

参数:
  • dataset -- the dataset to be analyzed

  • output_path -- path to store the analysis results

  • overall_result -- optional precomputed overall stats result

  • save_stats_in_one_file -- whether save all analysis figures of all stats into one image file

analyze(show_percentiles=False, show=False, skip_export=False)[源代码]

Apply analysis and draw the analysis figure for stats.

参数:
  • show_percentiles -- whether to show the percentile line in each sub-figure. If it's true, there will be several red lines to indicate the quantiles of the stats distributions

  • show -- whether to show in a single window after drawing

  • skip_export -- whether save the results into disk

返回:

draw_box(ax, data, save_path, percentiles=None, show=False)[源代码]

Draw the box plot for the data.

参数:
  • ax -- the axes to draw

  • data -- data to draw

  • save_path -- the path to save the box figure

  • percentiles -- the overall analysis result of the data including percentile information

  • show -- whether to show in a single window after drawing

返回:

draw_hist(ax, data, save_path, percentiles=None, show=False)[源代码]

Draw the histogram for the data.

参数:
  • ax -- the axes to draw

  • data -- data to draw

  • save_path -- the path to save the histogram figure

  • percentiles -- the overall analysis result of the data including percentile information

  • show -- whether to show in a single window after drawing

返回:

draw_wordcloud(ax, data, save_path, show=False)[源代码]
class data_juicer.analysis.CorrelationAnalysis(dataset, output_path)[源代码]

基类:object

Analyze the correlations among different stats. Only for numerical stats.

__init__(dataset, output_path)[源代码]

Initialization method.

参数:
  • dataset -- the dataset to be analyzed

  • output_path -- path to store the analysis results

analyze(method='pearson', show=False, skip_export=False)[源代码]
class data_juicer.analysis.DiversityAnalysis(dataset, output_path, lang_or_model='en')[源代码]

基类:object

Apply diversity analysis for each sample and get an overall analysis result.

__init__(dataset, output_path, lang_or_model='en')[源代码]

Initialization method :param dataset: the dataset to be analyzed :param output_path: path to store the analysis results :param lang_or_model: the diversity model or a specific language used to load the diversity model.

analyze(lang_or_model=None, column_name='text', postproc_func=<function get_diversity>, **postproc_kwarg)[源代码]

Apply diversity analysis on the whole dataset.

参数:
  • lang_or_model -- the diversity model or a specific language used to load the diversity model

  • column_name -- the name of column to be analyzed

  • postproc_func -- function to analyze diversity. In default, it's function get_diversity

  • postproc_kwarg -- arguments of the postproc_func

返回:

compute(lang_or_model=None, column_name='text')[源代码]

Apply lexical tree analysis on each sample.

参数:
  • lang_or_model -- the diversity model or a specific language used to load the diversity model

  • column_name -- the name of column to be analyzed

返回:

the analysis result.

class data_juicer.analysis.OverallAnalysis(dataset, output_path)[源代码]

基类:object

Apply analysis on the overall stats, including mean, std, quantiles, etc.

__init__(dataset, output_path)[源代码]

Initialization method.

参数:
  • dataset -- the dataset to be analyzed

  • output_path -- path to store the analysis results.

analyze(percentiles=[], num_proc=1, skip_export=False)[源代码]

Apply overall analysis on the whole dataset based on the describe method of pandas.

参数:
  • percentiles -- percentiles to analyze

  • num_proc -- number of processes to analyze the dataset

  • skip_export -- whether export the results to disk

返回:

the overall analysis result.

refine_single_column(col)[源代码]