data_juicer.ops.mapper.query_topic_detection_mapper 源代码
from typing import Dict, Optional
from data_juicer.utils.constant import Fields, MetaKeys
from data_juicer.utils.model_utils import get_model, prepare_model
from ..base_op import OPERATORS, TAGGING_OPS, Mapper
OP_NAME = "query_topic_detection_mapper"
[文档]
@TAGGING_OPS.register_module(OP_NAME)
@OPERATORS.register_module(OP_NAME)
class QueryTopicDetectionMapper(Mapper):
"""Predicts the topic label and its corresponding score for a given query. The input is
taken from the specified query key. The output, which includes the predicted topic label
and its score, is stored in the 'query_topic_label' and 'query_topic_label_score' fields
of the Data-Juicer meta field. This operator uses a Hugging Face model for topic
classification. If a Chinese to English translation model is provided, it will first
translate the query from Chinese to English before predicting the topic.
- Uses a Hugging Face model for topic classification.
- Optionally translates Chinese queries to English using another Hugging Face
model.
- Stores the predicted topic label in 'query_topic_label'.
- Stores the corresponding score in 'query_topic_label_score'."""
_accelerator = "cuda"
_batched_op = True
[文档]
def __init__(
self,
hf_model: str = "dstefa/roberta-base_topic_classification_nyt_news", # noqa: E501 E131
zh_to_en_hf_model: Optional[str] = "Helsinki-NLP/opus-mt-zh-en",
model_params: Dict = {},
zh_to_en_model_params: Dict = {},
*,
label_key: str = MetaKeys.query_topic_label,
score_key: str = MetaKeys.query_topic_score,
**kwargs,
):
"""
Initialization method.
:param hf_model: Huggingface model ID to predict topic label.
:param zh_to_en_hf_model: Translation model from Chinese to English.
If not None, translate the query from Chinese to English.
:param model_params: model param for hf_model.
:param zh_to_en_model_params: model param for zh_to_hf_model.
:param label_key: The key name in the meta field to store the
output label. It is 'query_topic_label' in default.
:param score_key: The key name in the meta field to store the
corresponding label score. It is 'query_topic_label_score'
in default.
:param kwargs: Extra keyword arguments.
"""
super().__init__(**kwargs)
self.label_key = label_key
self.score_key = score_key
self.model_key = prepare_model(
model_type="huggingface",
pretrained_model_name_or_path=hf_model,
return_pipe=True,
pipe_task="text-classification",
**model_params,
)
if zh_to_en_hf_model is not None:
self.zh_to_en_model_key = prepare_model(
model_type="huggingface",
pretrained_model_name_or_path=zh_to_en_hf_model,
return_pipe=True,
pipe_task="translation",
**zh_to_en_model_params,
)
else:
self.zh_to_en_model_key = None
[文档]
def process_batched(self, samples, rank=None):
metas = samples[Fields.meta]
if self.label_key in metas[0] and self.score_key in metas[0]:
return samples
queries = samples[self.query_key]
if self.zh_to_en_model_key is not None:
translator, _ = get_model(self.zh_to_en_model_key, rank, self.use_cuda())
results = translator(queries)
queries = [item["translation_text"] for item in results]
classifier, _ = get_model(self.model_key, rank, self.use_cuda())
results = classifier(queries)
labels = [r["label"] for r in results]
scores = [r["score"] for r in results]
for i in range(len(metas)):
metas[i][self.label_key] = labels[i]
metas[i][self.score_key] = scores[i]
return samples