data_juicer.ops.mapper.imgdiff_difference_caption_generator_mapper module¶
- class data_juicer.ops.mapper.imgdiff_difference_caption_generator_mapper.Difference_Caption_Generator_Mapper(mllm_mapper_args: Dict | None = {}, image_text_matching_filter_args: Dict | None = {}, text_pair_similarity_filter_args: Dict | None = {}, *args, **kwargs)[源代码]¶
基类:
Mapper
Generates difference captions for bounding box regions in two images.
This operator processes pairs of images and generates captions for the differences in their bounding box regions. It uses a multi-step process: - Describes the content of each bounding box region using a Hugging Face model. - Crops the bounding box regions from both images. - Checks if the cropped regions match the generated captions. - Determines if there are differences between the two captions. - Marks the difference area with a red box. - Generates difference captions for the marked areas. - The key metric is the similarity score between the captions, computed using a CLIP
model.
If no valid bounding boxes or differences are found, it returns empty captions and zeroed bounding boxes.
Uses 'cuda' as the accelerator if any of the fused operations support it.
Caches temporary images during processing and clears them afterward.
- __init__(mllm_mapper_args: Dict | None = {}, image_text_matching_filter_args: Dict | None = {}, text_pair_similarity_filter_args: Dict | None = {}, *args, **kwargs)[源代码]¶
Initialization.
- 参数:
mllm_mapper_args -- Arguments for multimodal language model mapper. Controls the generation of captions for bounding box regions. Default empty dict will use fixed values: max_new_tokens=256, temperature=0.2, top_p=None, num_beams=1, hf_model="llava-hf/llava-v1.6-vicuna-7b-hf".
image_text_matching_filter_args -- Arguments for image-text matching filter. Controls the matching between cropped regions and generated captions. Default empty dict will use fixed values: min_score=0.1, max_score=1.0, hf_blip="Salesforce/blip-itm-base-coco", num_proc=1.
text_pair_similarity_filter_args -- Arguments for text pair similarity filter. Controls the similarity comparison between caption pairs. Default empty dict will use fixed values: min_score=0.1, max_score=1.0, hf_clip="openai/clip-vit-base-patch32", text_key_second="target_text", num_proc=1.