Source code for trinity.algorithm.sample_strategy.sample_strategy

from abc import ABC, abstractmethod
from typing import Any, Dict, List, Tuple

from trinity.algorithm.sample_strategy.utils import representative_sample
from trinity.buffer import get_buffer_reader
from trinity.common.config import BufferConfig
from trinity.common.experience import Experiences
from trinity.utils.registry import Registry
from trinity.utils.timer import Timer

SAMPLE_STRATEGY = Registry("sample_strategy")


[docs] class SampleStrategy(ABC):
[docs] def __init__(self, buffer_config: BufferConfig, **kwargs) -> None: self.pad_token_id = buffer_config.pad_token_id
[docs] @abstractmethod async def sample(self, step: int) -> Tuple[Experiences, Dict, List]: """Sample data from buffer. Args: step (`int`): The step number of current step. Returns: `Experiences`: The sampled Experiences data. `Dict`: Metrics for logging. `List`: Representative data for logging. """
[docs] @classmethod @abstractmethod def default_args(cls) -> dict: """Get the default arguments of the sample strategy."""
[docs] @SAMPLE_STRATEGY.register_module("warmup") class WarmupSampleStrategy(SampleStrategy): """The default sample strategy."""
[docs] def __init__(self, buffer_config: BufferConfig, **kwargs): super().__init__(buffer_config) self.exp_buffer = get_buffer_reader( buffer_config.trainer_input.experience_buffer, buffer_config # type: ignore ) self.sft_warmup_steps = buffer_config.trainer_input.sft_warmup_steps if self.sft_warmup_steps > 0 and buffer_config.trainer_input.sft_warmup_dataset is None: raise ValueError("sft_warmup_dataset is required when sft_warmup_steps > 0") if buffer_config.trainer_input.sft_warmup_dataset is not None: self.sft_buffer = get_buffer_reader( buffer_config.trainer_input.sft_warmup_dataset, buffer_config ) else: self.sft_buffer = None
[docs] async def sample(self, step: int, **kwargs) -> Tuple[Experiences, Dict, List]: metrics = {} with Timer(metrics, "read_time"): if step <= self.sft_warmup_steps: exp_list = await self.sft_buffer.read_async() else: exp_list = await self.exp_buffer.read_async() repr_samples = representative_sample(exp_list) with Timer(metrics, "gather_time"): exps = Experiences.gather_experiences(exp_list, self.pad_token_id) # type: ignore return exps, metrics, repr_samples
[docs] @classmethod def default_args(cls) -> dict: return {}
[docs] @SAMPLE_STRATEGY.register_module("default") class DefaultSampleStrategy(SampleStrategy):
[docs] def __init__(self, buffer_config: BufferConfig, **kwargs): super().__init__(buffer_config) self.exp_buffer = get_buffer_reader( buffer_config.trainer_input.experience_buffer, buffer_config # type: ignore )
[docs] async def sample(self, step: int, **kwargs) -> Tuple[Any, Dict, List]: metrics = {} with Timer(metrics, "read_time"): exp_list = await self.exp_buffer.read_async() repr_samples = representative_sample(exp_list) with Timer(metrics, "gather_time"): exps = Experiences.gather_experiences(exp_list, self.pad_token_id) # type: ignore return exps, metrics, repr_samples
[docs] @classmethod def default_args(cls) -> dict: return {}