Source code for trinity.trainer.verl.ray_trainer

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Modified from ray_trainer.py
"""

import os
import uuid
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import dataclass, field
from enum import Enum
from pprint import pprint
from typing import Dict, Type

import numpy as np
import ray
import torch
import tqdm
from codetiming import Timer
from omegaconf import OmegaConf, open_dict
from torch.utils.data import RandomSampler, SequentialSampler
from torchdata.stateful_dataloader import StatefulDataLoader
from verl import DataProto
from verl.protocol import pad_dataproto_to_divisor, unpad_dataproto
from verl.single_controller.base import Worker
from verl.single_controller.ray import (
    RayClassWithInitArgs,
    RayResourcePool,
    RayWorkerGroup,
)
from verl.single_controller.ray.base import create_colocated_worker_cls
from verl.trainer.ppo.metric_utils import (
    compute_data_metrics,
    compute_throughout_metrics,
    compute_timing_metrics,
    reduce_metrics,
)
from verl.utils.checkpoint.checkpoint_manager import find_latest_ckpt_path
from verl.utils.dataset.rl_dataset import RLHFDataset, collate_fn
from verl.utils.seqlen_balancing import (
    get_seqlen_balanced_partitions,
    log_seqlen_unbalance,
)
from verl.utils.torch_functional import masked_mean
from verl.utils.tracking import ValidationGenerationsLogger

from trinity.common.constants import AlgorithmType
from trinity.trainer.verl import core_algos

WorkerType = Type[Worker]


[docs] class Role(Enum): """ To create more roles dynamically, you can subclass Role and add new members """ Actor = 0 Rollout = 1 ActorRollout = 2 Critic = 3 RefPolicy = 4 RewardModel = 5 ActorRolloutRef = 6
[docs] class AdvantageEstimator(str, Enum): """ Using an enumeration class to avoid spelling errors in adv_estimator """ GAE = "gae" GRPO = "grpo" REINFORCE_PLUS_PLUS = "reinforce_plus_plus" REMAX = "remax" RLOO = "rloo"
[docs] @dataclass class ResourcePoolManager: """ Define a resource pool specification. Resource pool will be initialized first. Mapping """ resource_pool_spec: dict[str, list[int]] mapping: dict[Role, str] resource_pool_dict: dict[str, RayResourcePool] = field(default_factory=dict)
[docs] def create_resource_pool(self): for resource_pool_name, process_on_nodes in self.resource_pool_spec.items(): # max_colocate_count means the number of WorkerGroups (i.e. processes) in each RayResourcePool # For FSDP backend, we recommend using max_colocate_count=1 that merge all WorkerGroups into one. # For Megatron backend, we recommend using max_colocate_count>1 that can utilize different WorkerGroup for differnt models resource_pool = RayResourcePool( process_on_nodes=process_on_nodes, use_gpu=True, max_colocate_count=1, name_prefix=resource_pool_name, ) self.resource_pool_dict[resource_pool_name] = resource_pool self._check_resource_available()
[docs] def get_resource_pool(self, role: Role) -> RayResourcePool: """Get the resource pool of the worker_cls""" return self.resource_pool_dict[self.mapping[role]]
[docs] def get_n_gpus(self) -> int: """Get the number of gpus in this cluster.""" return sum( [ n_gpus for process_on_nodes in self.resource_pool_spec.values() for n_gpus in process_on_nodes ] )
def _check_resource_available(self): """Check if the resource pool can be satisfied in this ray cluster.""" node_available_resources = ray.state.available_resources_per_node() node_available_gpus = { node: node_info.get("GPU", 0) for node, node_info in node_available_resources.items() } # check total required gpus can be satisfied total_available_gpus = sum(node_available_gpus.values()) total_required_gpus = sum( [ n_gpus for process_on_nodes in self.resource_pool_spec.values() for n_gpus in process_on_nodes ] ) if total_available_gpus < total_required_gpus: raise ValueError( f"Total available GPUs {total_available_gpus} is less than total desired GPUs {total_required_gpus}" ) # check each resource pool can be satisfied, O(#resource_pools * #nodes) for resource_pool_name, process_on_nodes in self.resource_pool_spec.items(): num_gpus, num_nodes = process_on_nodes[0], len(process_on_nodes) for node, available_gpus in node_available_gpus.items(): if available_gpus >= num_gpus: node_available_gpus[node] -= num_gpus num_nodes -= 1 if num_nodes == 0: break if num_nodes > 0: raise ValueError( f"Resource pool {resource_pool_name}: {num_gpus}*{num_nodes} cannot be satisfied in this ray cluster" )
[docs] def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController, kl_penalty="kl"): responses = data.batch["responses"] response_length = responses.size(1) token_level_scores = data.batch["token_level_scores"] batch_size = data.batch.batch_size[0] attention_mask = data.batch["attention_mask"] # response_mask = attention_mask[:, -response_length:] response_mask = data.batch["response_mask"] assert response_mask.shape == attention_mask[:, -response_length:].shape # compute kl between ref_policy and current policy if "ref_log_prob" in data.batch.keys(): kld = core_algos.kl_penalty( data.batch["old_log_probs"], data.batch["ref_log_prob"], kl_penalty=kl_penalty ) # (batch_size, response_length) kld = kld * response_mask beta = kl_ctrl.value else: beta = 0 kld = torch.zeros_like(response_mask, dtype=torch.float32) token_level_rewards = token_level_scores - beta * kld current_kl = masked_mean(kld, mask=response_mask, axis=-1) # average over sequence current_kl = torch.mean(current_kl, dim=0).item() # according to https://github.com/huggingface/trl/blob/951ca1841f29114b969b57b26c7d3e80a39f75a0/trl/trainer/ppo_trainer.py#L837 kl_ctrl.update(current_kl=current_kl, n_steps=batch_size) data.batch["token_level_rewards"] = token_level_rewards metrics = {"critic/kl": current_kl, "critic/kl_coeff": beta} return data, metrics
[docs] def compute_response_mask(data: DataProto): responses = data.batch["responses"] response_length = responses.size(1) attention_mask = data.batch["attention_mask"] return attention_mask[:, -response_length:]
[docs] def compute_advantage(data: DataProto, **kwargs): """Extend verl's original compute_advantage with OPMD""" algorithm_type: AlgorithmType = kwargs.get("algorithm_type", AlgorithmType.PPO) if algorithm_type == AlgorithmType.OPMD: tau = kwargs.get("tau", 1.0) opmd_baseline = kwargs.get("opmd_baseline", "mean") return compute_advantage_opmd( data=data, tau=tau, opmd_baseline=opmd_baseline, ) elif algorithm_type == AlgorithmType.PAIRWISE_OPMD: data.batch["advantages"] = None data.batch["returns"] = None return data elif algorithm_type.is_rft(): adv_estimator = kwargs.get("adv_estimator", None) gamma = kwargs.get("gamma", 1.0) lam = kwargs.get("lam", 1.0) num_repeat = kwargs.get("num_repeat", 1) return compute_advantage_ppo( data=data, adv_estimator=adv_estimator, gamma=gamma, lam=lam, num_repeat=num_repeat, ) else: raise ValueError(f"Get invalid algorithm_type '{algorithm_type}'.")
[docs] def compute_advantage_opmd(data: DataProto, tau=1.0, opmd_baseline="mean"): # Modified from GRPO version token_level_rewards = data.batch["token_level_rewards"] index = data.non_tensor_batch["uid"] responses = data.batch["responses"] response_length = responses.size(-1) attention_mask = data.batch["attention_mask"] response_mask = attention_mask[:, -response_length:] advantages, returns = core_algos.compute_opmd_outcome_advantage( token_level_rewards=token_level_rewards, eos_mask=response_mask, index=index, opmd_baseline=opmd_baseline, tau=tau, ) data.batch["advantages"] = advantages data.batch["returns"] = returns return data
[docs] def compute_advantage_ppo(data: DataProto, adv_estimator, gamma=1.0, lam=1.0, num_repeat=1): # prepare response group # TODO: add other ways to estimate advantages if adv_estimator == AdvantageEstimator.GAE: advantages, returns = core_algos.compute_gae_advantage_return( token_level_rewards=data.batch["token_level_rewards"], values=data.batch["values"], eos_mask=data.batch["response_mask"], gamma=gamma, lam=lam, ) data.batch["advantages"] = advantages data.batch["returns"] = returns elif adv_estimator == AdvantageEstimator.GRPO: advantages, returns = core_algos.compute_grpo_outcome_advantage( token_level_rewards=data.batch["token_level_rewards"], eos_mask=data.batch["response_mask"], index=data.non_tensor_batch["uid"], ) data.batch["advantages"] = advantages data.batch["returns"] = returns elif adv_estimator == AdvantageEstimator.REINFORCE_PLUS_PLUS: advantages, returns = core_algos.compute_reinforce_plus_plus_outcome_advantage( token_level_rewards=data.batch["token_level_rewards"], eos_mask=data.batch["response_mask"], gamma=gamma, ) data.batch["advantages"] = advantages data.batch["returns"] = returns elif adv_estimator == AdvantageEstimator.REMAX: advantages, returns = core_algos.compute_remax_outcome_advantage( token_level_rewards=data.batch["token_level_rewards"], reward_baselines=data.batch["reward_baselines"], eos_mask=data.batch["response_mask"], ) data.batch["advantages"] = advantages data.batch["returns"] = returns elif adv_estimator == AdvantageEstimator.RLOO: advantages, returns = core_algos.compute_rloo_outcome_advantage( token_level_rewards=data.batch["token_level_rewards"], eos_mask=data.batch["response_mask"], index=data.non_tensor_batch["uid"], ) data.batch["advantages"] = advantages data.batch["returns"] = returns else: raise NotImplementedError return data
@contextmanager def _timer(name: str, timing_raw: Dict[str, float]): with Timer(name=name, logger=None) as timer: yield timing_raw[name] = timer.last
[docs] class RayPPOTrainer(object): """ Note that this trainer runs on the driver process on a single CPU/GPU node. """ # TODO: support each role have individual ray_worker_group_cls, # i.e., support different backend of different role
[docs] def __init__( self, config, tokenizer, role_worker_mapping: dict[Role, WorkerType], resource_pool_manager: ResourcePoolManager, ray_worker_group_cls: RayWorkerGroup = RayWorkerGroup, processor=None, reward_fn=None, val_reward_fn=None, ): # assert torch.cuda.is_available(), 'cuda must be available on driver' self.tokenizer = tokenizer self.processor = processor self.config = config self.reward_fn = reward_fn self.val_reward_fn = val_reward_fn self.hybrid_engine = config.actor_rollout_ref.hybrid_engine assert self.hybrid_engine, "Currently, only support hybrid engine" if self.hybrid_engine: assert Role.ActorRollout in role_worker_mapping, f"{role_worker_mapping.keys()=}" self.role_worker_mapping = role_worker_mapping self.resource_pool_manager = resource_pool_manager self.use_reference_policy = Role.RefPolicy in role_worker_mapping self.use_rm = Role.RewardModel in role_worker_mapping self.ray_worker_group_cls = ray_worker_group_cls self.validation_generations_logger = ValidationGenerationsLogger() # define KL control if self.use_reference_policy: self.kl_ctrl = core_algos.get_kl_controller(config.algorithm.kl_ctrl) else: self.kl_ctrl = core_algos.FixedKLController(kl_coef=0.0) if ( self.config.actor_rollout_ref.actor.get("algorithm_type", AlgorithmType.PPO) != AlgorithmType.PPO ): self.use_critic = False elif self.config.algorithm.adv_estimator == AdvantageEstimator.GAE: self.use_critic = True elif self.config.algorithm.adv_estimator in [ AdvantageEstimator.GRPO, AdvantageEstimator.REINFORCE_PLUS_PLUS, AdvantageEstimator.REMAX, AdvantageEstimator.RLOO, ]: self.use_critic = False else: raise NotImplementedError self._validate_config() self._create_dataloader()
def _validate_config(self): # noqa: C901 config = self.config # number of GPUs total n_gpus = config.trainer.n_gpus_per_node * config.trainer.nnodes # 1. Check total batch size for data correctness real_train_batch_size = config.data.train_batch_size * config.actor_rollout_ref.rollout.n assert ( real_train_batch_size % n_gpus == 0 ), f"real_train_batch_size ({real_train_batch_size}) must be divisible by total n_gpus ({n_gpus})." # A helper function to check "micro_batch_size" vs "micro_batch_size_per_gpu" # We throw an error if the user sets both. The new convention is "..._micro_batch_size_per_gpu". def check_mutually_exclusive(mbs, mbs_per_gpu, name: str): if mbs is None and mbs_per_gpu is None: raise ValueError( f"[{name}] Please set at least one of '{name}.micro_batch_size' or " f"'{name}.micro_batch_size_per_gpu'." ) if mbs is not None and mbs_per_gpu is not None: raise ValueError( f"[{name}] You have set both '{name}.micro_batch_size' AND " f"'{name}.micro_batch_size_per_gpu'. Please remove '{name}.micro_batch_size' " f"because only '*_micro_batch_size_per_gpu' is supported (the former is deprecated)." ) if not config.actor_rollout_ref.actor.use_dynamic_bsz: # actor: ppo_micro_batch_size vs. ppo_micro_batch_size_per_gpu check_mutually_exclusive( config.actor_rollout_ref.actor.ppo_micro_batch_size, config.actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu, "actor_rollout_ref.actor", ) # reference: log_prob_micro_batch_size vs. log_prob_micro_batch_size_per_gpu check_mutually_exclusive( config.actor_rollout_ref.ref.log_prob_micro_batch_size, config.actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu, "actor_rollout_ref.ref", ) # The rollout section also has log_prob_micro_batch_size vs. log_prob_micro_batch_size_per_gpu check_mutually_exclusive( config.actor_rollout_ref.rollout.log_prob_micro_batch_size, config.actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu, "actor_rollout_ref.rollout", ) if self.use_critic and not config.critic.use_dynamic_bsz: # Check for critic micro-batch size conflicts check_mutually_exclusive( config.critic.ppo_micro_batch_size, config.critic.ppo_micro_batch_size_per_gpu, "critic", ) # Check for reward model micro-batch size conflicts if config.reward_model.enable and not config.reward_model.use_dynamic_bsz: check_mutually_exclusive( config.reward_model.micro_batch_size, config.reward_model.micro_batch_size_per_gpu, "reward_model", ) # Actor # if NOT dynamic_bsz, we must ensure: # ppo_mini_batch_size is divisible by ppo_micro_batch_size # ppo_micro_batch_size * sequence_parallel_size >= n_gpus if not config.actor_rollout_ref.actor.use_dynamic_bsz: assert ( config.data.train_batch_size >= config.actor_rollout_ref.actor.ppo_mini_batch_size ) sp_size = config.actor_rollout_ref.actor.get("ulysses_sequence_parallel_size", 1) if config.actor_rollout_ref.actor.ppo_micro_batch_size is not None: assert ( config.actor_rollout_ref.actor.ppo_mini_batch_size % config.actor_rollout_ref.actor.ppo_micro_batch_size == 0 ) assert config.actor_rollout_ref.actor.ppo_micro_batch_size * sp_size >= n_gpus # critic if self.use_critic and not config.critic.use_dynamic_bsz: assert config.data.train_batch_size >= config.critic.ppo_mini_batch_size sp_size = config.critic.get("ulysses_sequence_parallel_size", 1) if config.critic.ppo_micro_batch_size is not None: assert config.critic.ppo_mini_batch_size % config.critic.ppo_micro_batch_size == 0 assert config.critic.ppo_micro_batch_size * sp_size >= n_gpus # Check if use_remove_padding is enabled when using sequence parallelism for fsdp if config.actor_rollout_ref.actor.strategy == "fsdp": if ( config.actor_rollout_ref.actor.get("ulysses_sequence_parallel_size", 1) > 1 or config.actor_rollout_ref.ref.get("ulysses_sequence_parallel_size", 1) > 1 ): assert ( config.actor_rollout_ref.model.use_remove_padding ), "When using sequence parallelism for actor/ref policy, you must enable `use_remove_padding`." if self.use_critic and config.critic.strategy == "fsdp": if config.critic.get("ulysses_sequence_parallel_size", 1) > 1: assert ( config.critic.model.use_remove_padding ), "When using sequence parallelism for critic, you must enable `use_remove_padding`." if config.data.get("val_batch_size", None) is not None: print( "WARNING: val_batch_size is deprecated. Validation datasets are sent to inference engines as a whole batch, which will schedule the memory themselves." ) print("[validate_config] All configuration checks passed successfully!") def _create_dataloader(self): # TODO: we have to make sure the batch size is divisible by the dp size self.train_dataset = RLHFDataset( parquet_files=self.config.data.train_files, tokenizer=self.tokenizer, processor=self.processor, prompt_key=self.config.data.prompt_key, image_key=self.config.data.get("image_key", "images"), max_prompt_length=self.config.data.max_prompt_length, filter_prompts=True, return_raw_chat=self.config.data.get("return_raw_chat", False), truncation="error", ) # use sampler for better ckpt resume if self.config.data.shuffle: train_dataloader_generator = torch.Generator() train_dataloader_generator.manual_seed(self.config.data.get("seed", 1)) sampler = RandomSampler( data_source=self.train_dataset, generator=train_dataloader_generator ) else: sampler = SequentialSampler(data_source=self.train_dataset) self.train_dataloader = StatefulDataLoader( dataset=self.train_dataset, batch_size=self.config.data.train_batch_size, num_workers=8, drop_last=True, collate_fn=collate_fn, sampler=sampler, ) self.val_dataset = RLHFDataset( parquet_files=self.config.data.val_files, tokenizer=self.tokenizer, processor=self.processor, prompt_key=self.config.data.prompt_key, image_key=self.config.data.get("image_key", "images"), max_prompt_length=self.config.data.max_prompt_length, filter_prompts=True, return_raw_chat=self.config.data.get("return_raw_chat", False), truncation="error", ) self.val_dataloader = StatefulDataLoader( dataset=self.val_dataset, # Validation datasets are sent to inference engines as a whole batch, # which will schedule the memory themselves. batch_size=len(self.val_dataset), num_workers=8, shuffle=False, drop_last=False, collate_fn=collate_fn, ) assert len(self.train_dataloader) >= 1 assert ( len(self.val_dataloader) == 1 ), "Validation dataloader must have a single batch, which inference engines will schedule the memory themselves." print(f"Size of train dataloader: {len(self.train_dataloader)}") # inject total_training_steps to actor/critic optim_config. This is hacky. total_training_steps = len(self.train_dataloader) * self.config.trainer.total_epochs if self.config.trainer.total_training_steps is not None: total_training_steps = self.config.trainer.total_training_steps self.total_training_steps = total_training_steps print(f"Total training steps: {self.total_training_steps}") OmegaConf.set_struct(self.config, True) with open_dict(self.config): self.config.actor_rollout_ref.actor.optim.total_training_steps = total_training_steps self.config.critic.optim.total_training_steps = total_training_steps def _maybe_log_val_generations(self, inputs, outputs, scores): """Log a table of validation samples to the configured logger (wandb or swanlab)""" generations_to_log = self.config.trainer.val_generations_to_log_to_wandb if generations_to_log == 0: return import numpy as np # Create tuples of (input, output, score) and sort by input text samples = list(zip(inputs, outputs, scores)) samples.sort(key=lambda x: x[0]) # Sort by input text # Use fixed random seed for deterministic shuffling rng = np.random.RandomState(42) rng.shuffle(samples) # Take first N samples after shuffling samples = samples[:generations_to_log] # Log to each configured logger self.validation_generations_logger.log( self.config.trainer.logger, samples, self.global_steps ) def _validate(self): reward_tensor_lst = [] data_source_lst = [] # Lists to collect samples for the table sample_inputs = [] sample_outputs = [] sample_scores = [] for test_data in self.val_dataloader: test_batch = DataProto.from_single_dict(test_data) # we only do validation on rule-based rm if ( self.config.reward_model.enable and test_batch[0].non_tensor_batch["reward_model"]["style"] == "model" ): return {} # Store original inputs input_ids = test_batch.batch["input_ids"] input_texts = [ self.tokenizer.decode(ids, skip_special_tokens=True) for ids in input_ids ] sample_inputs.extend(input_texts) if "multi_modal_inputs" in test_batch.non_tensor_batch.keys(): test_gen_batch = test_batch.pop( batch_keys=["input_ids", "attention_mask", "position_ids"], non_tensor_batch_keys=[ "raw_prompt_ids", "multi_modal_data", "multi_modal_inputs", ], ) else: test_gen_batch = test_batch.pop( batch_keys=["input_ids", "attention_mask", "position_ids"], non_tensor_batch_keys=["raw_prompt_ids"], ) test_gen_batch.meta_info = { "eos_token_id": self.tokenizer.eos_token_id, "pad_token_id": self.tokenizer.pad_token_id, "recompute_log_prob": False, "do_sample": False, "validate": True, } # pad to be divisible by dp_size test_gen_batch_padded, pad_size = pad_dataproto_to_divisor( test_gen_batch, self.actor_rollout_wg.world_size ) test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences( test_gen_batch_padded ) # unpad test_output_gen_batch = unpad_dataproto(test_output_gen_batch_padded, pad_size=pad_size) print("validation generation end") # Store generated outputs output_ids = test_output_gen_batch.batch["responses"] output_texts = [ self.tokenizer.decode(ids, skip_special_tokens=True) for ids in output_ids ] sample_outputs.extend(output_texts) test_batch = test_batch.union(test_output_gen_batch) # evaluate using reward_function reward_tensor = self.val_reward_fn(test_batch) # Store scores scores = reward_tensor.sum(-1).cpu().tolist() sample_scores.extend(scores) reward_tensor_lst.append(reward_tensor) data_source_lst.append( test_batch.non_tensor_batch.get("data_source", ["unknown"] * reward_tensor.shape[0]) ) self._maybe_log_val_generations( inputs=sample_inputs, outputs=sample_outputs, scores=sample_scores ) reward_tensor = torch.cat(reward_tensor_lst, dim=0).sum(-1).cpu() # (batch_size,) data_sources = np.concatenate(data_source_lst, axis=0) # evaluate test_score based on data source data_source_reward = {} for i in range(reward_tensor.shape[0]): data_source = data_sources[i] if data_source not in data_source_reward: data_source_reward[data_source] = [] data_source_reward[data_source].append(reward_tensor[i].item()) metric_dict = {} for data_source, rewards in data_source_reward.items(): metric_dict[f"val/test_score/{data_source}"] = np.mean(rewards) return metric_dict
[docs] def init_workers(self): """Init resource pool and worker group""" self.resource_pool_manager.create_resource_pool() self.resource_pool_to_cls = { pool: {} for pool in self.resource_pool_manager.resource_pool_dict.values() } # create actor and rollout if self.hybrid_engine: resource_pool = self.resource_pool_manager.get_resource_pool(Role.ActorRollout) actor_rollout_cls = RayClassWithInitArgs( cls=self.role_worker_mapping[Role.ActorRollout], config=self.config.actor_rollout_ref, role="actor", ) self.resource_pool_to_cls[resource_pool]["actor"] = actor_rollout_cls else: raise NotImplementedError # create critic if self.use_critic: resource_pool = self.resource_pool_manager.get_resource_pool(Role.Critic) critic_cls = RayClassWithInitArgs( cls=self.role_worker_mapping[Role.Critic], config=self.config.critic ) self.resource_pool_to_cls[resource_pool]["critic"] = critic_cls # create reference policy if needed if self.use_reference_policy: resource_pool = self.resource_pool_manager.get_resource_pool(Role.RefPolicy) ref_policy_cls = RayClassWithInitArgs( self.role_worker_mapping[Role.RefPolicy], config=self.config.actor_rollout_ref, role="ref", ) self.resource_pool_to_cls[resource_pool]["ref"] = ref_policy_cls # create a reward model if reward_fn is None if self.use_rm: # we create a RM here resource_pool = self.resource_pool_manager.get_resource_pool(Role.RewardModel) rm_cls = RayClassWithInitArgs( self.role_worker_mapping[Role.RewardModel], config=self.config.reward_model ) self.resource_pool_to_cls[resource_pool]["rm"] = rm_cls # initialize WorkerGroup # NOTE: if you want to use a different resource pool for each role, which can support different parallel size, # you should not use `create_colocated_worker_cls`. Instead, directly pass different resource pool to different worker groups. # See https://github.com/volcengine/verl/blob/master/examples/ray/tutorial.ipynb for more information. all_wg = {} self.wg_dicts = [] for resource_pool, class_dict in self.resource_pool_to_cls.items(): worker_dict_cls = create_colocated_worker_cls(class_dict=class_dict) wg_dict = self.ray_worker_group_cls( resource_pool=resource_pool, ray_cls_with_init=worker_dict_cls ) spawn_wg = wg_dict.spawn(prefix_set=class_dict.keys()) all_wg.update(spawn_wg) # keep the referece of WorkerDict to support ray >= 2.31. Ref: https://github.com/ray-project/ray/pull/45699 self.wg_dicts.append(wg_dict) if self.use_critic: self.critic_wg = all_wg["critic"] self.critic_wg.init_model() if self.use_reference_policy: self.ref_policy_wg = all_wg["ref"] self.ref_policy_wg.init_model() if self.use_rm: self.rm_wg = all_wg["rm"] self.rm_wg.init_model() # we should create rollout at the end so that vllm can have a better estimation of kv cache memory self.actor_rollout_wg = all_wg["actor"] self.actor_rollout_wg.init_model()
def _save_checkpoint(self): # path: given_path + `/global_step_{global_steps}` + `/actor` local_global_step_folder = os.path.join( self.config.trainer.default_local_dir, f"global_step_{self.global_steps}" ) print(f"local_global_step_folder: {local_global_step_folder}") actor_local_path = os.path.join(local_global_step_folder, "actor") actor_remote_path = ( None if self.config.trainer.default_hdfs_dir is None else os.path.join( self.config.trainer.default_hdfs_dir, f"global_step_{self.global_steps}", "actor" ) ) remove_previous_ckpt_in_save = self.config.trainer.get( "remove_previous_ckpt_in_save", False ) if remove_previous_ckpt_in_save: print( "Warning: remove_previous_ckpt_in_save is deprecated, set max_actor_ckpt_to_keep=1 and max_critic_ckpt_to_keep=1 instead" ) max_actor_ckpt_to_keep = ( self.config.trainer.get("max_actor_ckpt_to_keep", None) if not remove_previous_ckpt_in_save else 1 ) max_critic_ckpt_to_keep = ( self.config.trainer.get("max_critic_ckpt_to_keep", None) if not remove_previous_ckpt_in_save else 1 ) self.actor_rollout_wg.save_checkpoint( actor_local_path, actor_remote_path, self.global_steps, max_ckpt_to_keep=max_actor_ckpt_to_keep, ) if self.use_critic: critic_local_path = os.path.join(local_global_step_folder, "critic") critic_remote_path = ( None if self.config.trainer.default_hdfs_dir is None else os.path.join( self.config.trainer.default_hdfs_dir, f"global_step_{self.global_steps}", "critic", ) ) self.critic_wg.save_checkpoint( critic_local_path, critic_remote_path, self.global_steps, max_ckpt_to_keep=max_critic_ckpt_to_keep, ) # save dataloader dataloader_local_path = os.path.join(local_global_step_folder, "data.pt") dataloader_state_dict = self.train_dataloader.state_dict() torch.save(dataloader_state_dict, dataloader_local_path) # latest checkpointed iteration tracker (for atomic usage) local_latest_checkpointed_iteration = os.path.join( self.config.trainer.default_local_dir, "latest_checkpointed_iteration.txt" ) with open(local_latest_checkpointed_iteration, "w") as f: f.write(str(self.global_steps)) def _load_checkpoint(self): if self.config.trainer.resume_mode == "disable": return 0 # load from hdfs if self.config.trainer.default_hdfs_dir is not None: raise NotImplementedError("load from hdfs is not implemented yet") else: checkpoint_folder = self.config.trainer.default_local_dir # TODO: check path if not os.path.isabs(checkpoint_folder): working_dir = os.getcwd() checkpoint_folder = os.path.join(working_dir, checkpoint_folder) global_step_folder = find_latest_ckpt_path(checkpoint_folder) # None if no latest # find global_step_folder if self.config.trainer.resume_mode == "auto": if global_step_folder is None: print("Training from scratch") return 0 else: if self.config.trainer.resume_mode == "resume_path": assert isinstance( self.config.trainer.resume_from_path, str ), "resume ckpt must be str type" assert ( "global_step_" in self.config.trainer.resume_from_path ), "resume ckpt must specify the global_steps" global_step_folder = self.config.trainer.resume_from_path if not os.path.isabs(global_step_folder): working_dir = os.getcwd() global_step_folder = os.path.join(working_dir, global_step_folder) print(f"Load from checkpoint folder: {global_step_folder}") # set global step self.global_steps = int(global_step_folder.split("global_step_")[-1]) print(f"Setting global step to {self.global_steps}") print(f"Resuming from {global_step_folder}") actor_path = os.path.join(global_step_folder, "actor") critic_path = os.path.join(global_step_folder, "critic") # load actor self.actor_rollout_wg.load_checkpoint( actor_path, del_local_after_load=self.config.trainer.del_local_ckpt_after_load ) # load critic if self.use_critic: self.critic_wg.load_checkpoint( critic_path, del_local_after_load=self.config.trainer.del_local_ckpt_after_load ) # load dataloader, # TODO: from remote not implemented yet dataloader_local_path = os.path.join(global_step_folder, "data.pt") if os.path.exists(dataloader_local_path): dataloader_state_dict = torch.load(dataloader_local_path, weights_only=False) self.train_dataloader.load_state_dict(dataloader_state_dict) else: print( f"Warning: No dataloader state found at {dataloader_local_path}, will start from scratch" ) def _balance_batch(self, batch: DataProto, metrics, logging_prefix="global_seqlen"): """Reorder the data on single controller such that each dp rank gets similar total tokens""" attention_mask = batch.batch["attention_mask"] batch_size = attention_mask.shape[0] global_seqlen_lst = ( batch.batch["attention_mask"].view(batch_size, -1).sum(-1).tolist() ) # (train_batch_size,) world_size = self.actor_rollout_wg.world_size global_partition_lst = get_seqlen_balanced_partitions( global_seqlen_lst, k_partitions=world_size, equal_size=True ) # reorder based on index. The data will be automatically equally partitioned by dispatch function global_idx = torch.tensor([j for partition in global_partition_lst for j in partition]) batch.reorder(global_idx) global_balance_stats = log_seqlen_unbalance( seqlen_list=global_seqlen_lst, partitions=global_partition_lst, prefix=logging_prefix ) metrics.update(global_balance_stats)
[docs] def fit(self): # noqa: C901 """ The training loop of PPO. The driver process only need to call the compute functions of the worker group through RPC to construct the PPO dataflow. The light-weight advantage computation is done on the driver process. """ from omegaconf import OmegaConf from verl.utils.tracking import Tracking logger = Tracking( project_name=self.config.trainer.project_name, experiment_name=self.config.trainer.experiment_name, default_backend=self.config.trainer.logger, config=OmegaConf.to_container(self.config, resolve=True), ) self.global_steps = 0 # load checkpoint before doing anything self._load_checkpoint() # perform validation before training # currently, we only support validation using the reward_function. if self.val_reward_fn is not None and self.config.trainer.get("val_before_train", True): val_metrics = self._validate() pprint(f"Initial validation metrics: {val_metrics}") logger.log(data=val_metrics, step=self.global_steps) if self.config.trainer.get("val_only", False): return # add tqdm progress_bar = tqdm( total=self.total_training_steps, initial=self.global_steps, desc="Training Progress" ) # we start from step 1 self.global_steps += 1 last_val_metrics = None for epoch in range(self.config.trainer.total_epochs): for batch_dict in self.train_dataloader: metrics = {} timing_raw = {} batch: DataProto = DataProto.from_single_dict(batch_dict) # pop those keys for generation if "multi_modal_inputs" in batch.non_tensor_batch.keys(): gen_batch = batch.pop( batch_keys=["input_ids", "attention_mask", "position_ids"], non_tensor_batch_keys=[ "raw_prompt_ids", "multi_modal_data", "multi_modal_inputs", ], ) else: gen_batch = batch.pop( batch_keys=["input_ids", "attention_mask", "position_ids"], non_tensor_batch_keys=["raw_prompt_ids"], ) is_last_step = self.global_steps >= self.total_training_steps with _timer("step", timing_raw): # generate a batch with _timer("gen", timing_raw): gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch) if self.config.algorithm.adv_estimator == AdvantageEstimator.REMAX: with _timer("gen_max", timing_raw): gen_baseline_batch = deepcopy(gen_batch) gen_baseline_batch.meta_info["do_sample"] = False gen_baseline_output = self.actor_rollout_wg.generate_sequences( gen_baseline_batch ) batch = batch.union(gen_baseline_output) reward_baseline_tensor = self.reward_fn(batch) reward_baseline_tensor = reward_baseline_tensor.sum(dim=-1) batch.pop(batch_keys=list(gen_baseline_output.batch.keys())) batch.batch["reward_baselines"] = reward_baseline_tensor del gen_baseline_batch, gen_baseline_output batch.non_tensor_batch["uid"] = np.array( [str(uuid.uuid4()) for _ in range(len(batch.batch))], dtype=object ) # repeat to align with repeated responses in rollout batch = batch.repeat( repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True ) batch = batch.union(gen_batch_output) batch.batch["response_mask"] = compute_response_mask(batch) # balance the number of valid tokens on each dp rank. # Note that this breaks the order of data inside the batch. # Please take care when you implement group based adv computation such as GRPO and rloo if self.config.trainer.balance_batch: self._balance_batch(batch, metrics=metrics) # compute global_valid tokens batch.meta_info["global_token_num"] = torch.sum( batch.batch["attention_mask"], dim=-1 ).tolist() # recompute old_log_probs with _timer("old_log_prob", timing_raw): old_log_prob = self.actor_rollout_wg.compute_log_prob(batch) batch = batch.union(old_log_prob) if self.use_reference_policy: # compute reference log_prob with _timer("ref", timing_raw): ref_log_prob = self.ref_policy_wg.compute_ref_log_prob(batch) batch = batch.union(ref_log_prob) # compute values if self.use_critic: with _timer("values", timing_raw): values = self.critic_wg.compute_values(batch) batch = batch.union(values) with _timer("adv", timing_raw): # compute scores. Support both model and function-based. # We first compute the scores using reward model. Then, we call reward_fn to combine # the results from reward model and rule-based results. if self.use_rm: # we first compute reward model score reward_tensor = self.rm_wg.compute_rm_score(batch) batch = batch.union(reward_tensor) # we combine with rule-based rm reward_tensor = self.reward_fn(batch) batch.batch["token_level_scores"] = reward_tensor # compute rewards. apply_kl_penalty if available if not self.config.actor_rollout_ref.actor.get("use_kl_loss", False): batch, kl_metrics = apply_kl_penalty( batch, kl_ctrl=self.kl_ctrl, kl_penalty=self.config.algorithm.kl_penalty, ) metrics.update(kl_metrics) else: batch.batch["token_level_rewards"] = batch.batch["token_level_scores"] # compute advantages, executed on the driver process algorithm_type = self.config.actor_rollout_ref.actor.get( "algorithm_type", AlgorithmType.PPO ) tau = self.config.actor_rollout_ref.actor.get("tau", 1.0) opmd_baseline = self.config.actor_rollout_ref.actor.get( "opmd_baseline", "mean" ) batch = compute_advantage( batch, algorithm_type=algorithm_type, adv_estimator=self.config.algorithm.adv_estimator, gamma=self.config.algorithm.gamma, lam=self.config.algorithm.lam, num_repeat=self.config.actor_rollout_ref.rollout.n, # additional config params for OPMD tau=tau, opmd_baseline=opmd_baseline, ) # update critic if self.use_critic: with _timer("update_critic", timing_raw): critic_output = self.critic_wg.update_critic(batch) critic_output_metrics = reduce_metrics(critic_output.meta_info["metrics"]) metrics.update(critic_output_metrics) # implement critic warmup if self.config.trainer.critic_warmup <= self.global_steps: # update actor with _timer("update_actor", timing_raw): actor_output = self.actor_rollout_wg.update_actor(batch) actor_output_metrics = reduce_metrics(actor_output.meta_info["metrics"]) metrics.update(actor_output_metrics) # validate if ( self.val_reward_fn is not None and self.config.trainer.test_freq > 0 and (is_last_step or self.global_steps % self.config.trainer.test_freq == 0) ): with _timer("testing", timing_raw): val_metrics: dict = self._validate() if is_last_step: last_val_metrics = val_metrics metrics.update(val_metrics) if self.config.trainer.save_freq > 0 and ( is_last_step or self.global_steps % self.config.trainer.save_freq == 0 ): with _timer("save_checkpoint", timing_raw): self._save_checkpoint() # collect metrics metrics.update(compute_data_metrics(batch=batch, use_critic=self.use_critic)) metrics.update(compute_timing_metrics(batch=batch, timing_raw=timing_raw)) # Implement actual tflpo and theoretical tflpo n_gpus = self.resource_pool_manager.get_n_gpus() metrics.update( compute_throughout_metrics(batch=batch, timing_raw=timing_raw, n_gpus=n_gpus) ) # TODO: make a canonical logger that supports various backend logger.log(data=metrics, step=self.global_steps) if is_last_step: pprint(f"Final validation metrics: {last_val_metrics}") progress_bar.close() return progress_bar.update(1) self.global_steps += 1