Source code for data_juicer.ops.mapper.video_face_blur_mapper

import os

import av
from PIL import ImageFilter

from data_juicer.utils.constant import Fields
from data_juicer.utils.file_utils import transfer_filename
from data_juicer.utils.lazy_loader import LazyLoader
from data_juicer.utils.mm_utils import (
    close_video,
    detect_faces,
    load_data_with_context,
    load_video,
    process_each_frame,
)
from data_juicer.utils.model_utils import get_model, prepare_model

from ..base_op import OPERATORS, UNFORKABLE, Mapper
from ..op_fusion import LOADED_VIDEOS

cv2 = LazyLoader("cv2", "opencv-python")

OP_NAME = "video_face_blur_mapper"


[docs] @UNFORKABLE.register_module(OP_NAME) @OPERATORS.register_module(OP_NAME) @LOADED_VIDEOS.register_module(OP_NAME) class VideoFaceBlurMapper(Mapper): """Mapper to blur faces detected in videos.""" _default_kwargs = { "scaleFactor": 1.1, "minNeighbors": 3, "minSize": None, "maxSize": None, }
[docs] def __init__( self, cv_classifier: str = "", blur_type: str = "gaussian", radius: float = 2, save_dir: str = None, *args, **kwargs, ): """ Initialization method. :param cv_classifier: OpenCV classifier path for face detection. By default, we will use 'haarcascade_frontalface_alt.xml'. :param blur_type: Type of blur kernel, including ['mean', 'box', 'gaussian']. :param radius: Radius of blur kernel. :param save_dir: The directory where generated video files will be stored. If not specified, outputs will be saved in the same directory as their corresponding input files. This path can alternatively be defined by setting the `DJ_PRODUCED_DATA_DIR` environment variable. :param args: extra args :param kwargs: extra args """ super().__init__(*args, **kwargs) self._init_parameters = self.remove_extra_parameters(locals()) self._init_parameters.pop("save_dir", None) if cv_classifier == "": cv_classifier = os.path.join(cv2.data.haarcascades, "haarcascade_frontalface_alt.xml") if blur_type not in ["mean", "box", "gaussian"]: raise ValueError( f"Blur_type [{blur_type}] is not supported. " f'Can only be one of ["mean", "box", "gaussian"]. ' ) if radius < 0: raise ValueError("Radius must be >= 0. ") if blur_type == "mean": self.blur = ImageFilter.BLUR elif blur_type == "box": self.blur = ImageFilter.BoxBlur(radius) else: self.blur = ImageFilter.GaussianBlur(radius) self.blur_type = blur_type self.radius = radius self.extra_kwargs = self._default_kwargs for key in kwargs: if key in self.extra_kwargs: self.extra_kwargs[key] = kwargs[key] self.model_key = prepare_model(model_type="opencv_classifier", model_path=cv_classifier) self.save_dir = save_dir
[docs] def process_single(self, sample, context=False): # there is no video in this sample if self.video_key not in sample or not sample[self.video_key]: sample[Fields.source_file] = [] return sample if Fields.source_file not in sample or not sample[Fields.source_file]: sample[Fields.source_file] = sample[self.video_key] loaded_video_keys = sample[self.video_key] sample, videos = load_data_with_context(sample, context, loaded_video_keys, load_video) model = get_model(self.model_key) def _blur_func(frame): image = frame.to_image() dets = detect_faces(image, model, **self.extra_kwargs) if len(dets) > 0: for x, y, w, h in dets: box = (x, y, x + w, y + h) blured_roi = image.crop(box).filter(self.blur) image.paste(blured_roi, box) frame = av.VideoFrame.from_image(image) return frame processed_video_keys = {} for video_key in loaded_video_keys: # skip duplicate if video_key in processed_video_keys: continue video = videos[video_key] blured_video_key = transfer_filename(video_key, OP_NAME, self.save_dir, **self._init_parameters) output_video_key = process_each_frame(video, blured_video_key, _blur_func) processed_video_keys[video_key] = output_video_key if not context: close_video(video) # when the file is modified, its source file needs to be updated. for i, value in enumerate(loaded_video_keys): if sample[Fields.source_file][i] != value: if processed_video_keys[value] != value: sample[Fields.source_file][i] = value sample[self.video_key] = [processed_video_keys[key] for key in loaded_video_keys] return sample