data_juicer.analysis.diversity_analysis module¶
- data_juicer.analysis.diversity_analysis.find_root_verb_and_its_dobj(tree_root)[source]¶
Find the verb and its object closest to the root.
- Parameters:
tree_root – the root of lexical tree
- Returns:
valid verb and its object.
- data_juicer.analysis.diversity_analysis.find_root_verb_and_its_dobj_in_string(nlp, s, first_sent=True)[source]¶
Find the verb and its object closest to the root of lexical tree of input string.
- Parameters:
nlp – the diversity model to analyze the diversity strings
s – the string to be analyzed
first_sent – whether to analyze the first sentence in the input string only. If it’s true, return the analysis result of the first sentence no matter it’s valid or not. If it’s false, return the first valid result over all sentences
- Returns:
valid verb and its object of this string
- data_juicer.analysis.diversity_analysis.get_diversity(dataset, top_k_verbs=20, top_k_nouns=4, **kwargs)[source]¶
Given the lexical tree analysis result, return the diversity results.
- Parameters:
dataset – lexical tree analysis result
top_k_verbs – only keep the top_k_verbs largest verb groups
top_k_nouns – only keep the top_k_nouns largest noun groups for each verb group
kwargs – extra args
- Returns:
the diversity results
- class data_juicer.analysis.diversity_analysis.DiversityAnalysis(dataset, output_path, lang_or_model='en')[source]¶
Bases:
object
Apply diversity analysis for each sample and get an overall analysis result.
- __init__(dataset, output_path, lang_or_model='en')[source]¶
Initialization method :param dataset: the dataset to be analyzed :param output_path: path to store the analysis results :param lang_or_model: the diversity model or a specific language used to load the diversity model.
- compute(lang_or_model=None, column_name='text')[source]¶
Apply lexical tree analysis on each sample.
- Parameters:
lang_or_model – the diversity model or a specific language used to load the diversity model
column_name – the name of column to be analyzed
- Returns:
the analysis result.
- analyze(lang_or_model=None, column_name='text', postproc_func=<function get_diversity>, **postproc_kwarg)[source]¶
Apply diversity analysis on the whole dataset.
- Parameters:
lang_or_model – the diversity model or a specific language used to load the diversity model
column_name – the name of column to be analyzed
postproc_func – function to analyze diversity. In default, it’s function get_diversity
postproc_kwarg – arguments of the postproc_func
- Returns: