data_juicer.ops.mapper.optimize_qa_mapper module

class data_juicer.ops.mapper.optimize_qa_mapper.OptimizeQAMapper(hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', *, system_prompt: str | None = None, input_template: str | None = None, qa_pair_template: str | None = None, output_pattern: str | None = None, enable_vllm: bool = False, model_params: Dict | None = None, sampling_params: Dict | None = None, **kwargs)[source]

Bases: Mapper

Mapper to optimize question-answer pairs.

DEFAULT_SYSTEM_PROMPT = '请优化输入的问答对,使【问题】和【回答】都更加详细、准确。必须按照以下标记格式,直接输出优化后的问答对:\n【问题】\n优化后的问题\n【回答】\n优化后的回答'
DEFAULT_INPUT_TEMPLATE = '以下是原始问答对:\n{}'
DEFAULT_QA_PAIR_TEMPLATE = '【问题】\n{}\n【回答】\n{}'
DEFAULT_OUTPUT_PATTERN = '.*?【问题】\\s*(.*?)\\s*【回答】\\s*(.*)'
__init__(hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', *, system_prompt: str | None = None, input_template: str | None = None, qa_pair_template: str | None = None, output_pattern: str | None = None, enable_vllm: bool = False, model_params: Dict | None = None, sampling_params: Dict | None = None, **kwargs)[source]

Initialization method.

Parameters:
  • hf_model – Hugging Face model ID.

  • system_prompt – System prompt for guiding the optimization task.

  • input_template – Template for building the input for the model. Please make sure the template contains one placeholder ‘{}’, which corresponds to the question and answer pair generated by param qa_pair_template.

  • qa_pair_template – Template for formatting the question and answer pair. Please make sure the template contains two ‘{}’ to format question and answer.

  • output_pattern – Regular expression pattern to extract question and answer from model response.

  • enable_vllm – Whether to use VLLM for inference acceleration.

  • model_params – Parameters for initializing the model.

  • sampling_params – Sampling parameters for text generation (e.g., {‘temperature’: 0.9, ‘top_p’: 0.95}).

  • kwargs – Extra keyword arguments.

build_input(sample)[source]
parse_output(raw_output)[source]
process_single(sample, rank=None)[source]

For sample level, sample –> sample

Parameters:

sample – sample to process

Returns:

processed sample