Source code for data_juicer.ops.mapper.image_blur_mapper
import os
import numpy as np
from data_juicer.utils.constant import Fields
from data_juicer.utils.file_utils import transfer_filename
from data_juicer.utils.mm_utils import load_data_with_context, load_image
from ..base_op import OPERATORS, Mapper
from ..op_fusion import LOADED_IMAGES
OP_NAME = "image_blur_mapper"
[docs]
@OPERATORS.register_module(OP_NAME)
@LOADED_IMAGES.register_module(OP_NAME)
class ImageBlurMapper(Mapper):
"""Blurs images in the dataset with a specified probability and blur type.
This operator blurs images using one of three types: mean, box, or Gaussian. The
probability of an image being blurred is controlled by the `p` parameter. The blur
effect is applied using a kernel with a specified radius. Blurred images are saved to a
directory, which can be specified or defaults to the input directory. If the save
directory is not provided, the `DJ_PRODUCED_DATA_DIR` environment variable can be used
to set it. The operator ensures that the blur type is one of the supported options and
that the radius is non-negative."""
[docs]
def __init__(
self, p: float = 0.2, blur_type: str = "gaussian", radius: float = 2, save_dir: str = None, *args, **kwargs
):
"""
Initialization method.
:param p: Probability of the image being blurred.
:param blur_type: Type of blur kernel, including
['mean', 'box', 'gaussian'].
:param radius: Radius of blur kernel.
:param save_dir: The directory where generated image files will be stored.
If not specified, outputs will be saved in the same directory as their corresponding input files.
This path can alternatively be defined by setting the `DJ_PRODUCED_DATA_DIR` environment variable.
:param args: extra args
:param kwargs: extra args
"""
super().__init__(*args, **kwargs)
self._init_parameters = self.remove_extra_parameters(locals())
self._init_parameters.pop("save_dir", None)
if blur_type not in ["mean", "box", "gaussian"]:
raise ValueError(
f"Blur_type [{blur_type}] is not supported. " f'Can only be one of ["mean", "box", "gaussian"]. '
)
if radius < 0:
raise ValueError("Radius must be >= 0. ")
self.p = p
from PIL import ImageFilter
if blur_type == "mean":
self.blur = ImageFilter.BLUR
elif blur_type == "box":
self.blur = ImageFilter.BoxBlur(radius)
else:
self.blur = ImageFilter.GaussianBlur(radius)
self.save_dir = save_dir
[docs]
def process_single(self, sample, context=False):
# there is no image in this sample
if self.image_key not in sample or not sample[self.image_key]:
sample[Fields.source_file] = []
return sample
if Fields.source_file not in sample or not sample[Fields.source_file]:
sample[Fields.source_file] = sample[self.image_key]
# load images
loaded_image_keys = sample[self.image_key]
sample, images = load_data_with_context(
sample, context, loaded_image_keys, load_image, mm_bytes_key=self.image_bytes_key
)
processed = {}
for image_key in loaded_image_keys:
if image_key in processed:
continue
if self.p < np.random.rand():
processed[image_key] = image_key
else:
blured_image_key = transfer_filename(image_key, OP_NAME, self.save_dir, **self._init_parameters)
if blured_image_key != image_key:
# the image_key is a valid local path, we can update it
if not os.path.exists(blured_image_key) or blured_image_key not in images:
blured_image = images[image_key].convert("RGB").filter(self.blur)
images[blured_image_key] = blured_image
blured_image.save(blured_image_key)
if context:
# update context
sample[Fields.context][blured_image_key] = blured_image
processed[image_key] = blured_image_key
else:
blured_image = images[image_key].convert("RGB").filter(self.blur)
images[image_key] = blured_image
processed[image_key] = image_key
if context:
# update context
sample[Fields.context][image_key] = blured_image
# when the file is modified, its source file needs to be updated.
for i, value in enumerate(loaded_image_keys):
if sample[Fields.source_file][i] != value:
if processed[value] != value:
sample[Fields.source_file][i] = value
if self.image_bytes_key in sample and i < len(sample[self.image_bytes_key]):
sample[self.image_bytes_key][i] = images[processed[value]].tobytes()
sample[self.image_key] = [processed[key] for key in loaded_image_keys]
return sample