Source code for data_juicer.ops.mapper.image_blur_mapper

import os

import numpy as np

from data_juicer.utils.constant import Fields
from data_juicer.utils.file_utils import transfer_filename
from data_juicer.utils.mm_utils import load_data_with_context, load_image

from ..base_op import OPERATORS, Mapper
from ..op_fusion import LOADED_IMAGES

OP_NAME = "image_blur_mapper"


[docs] @OPERATORS.register_module(OP_NAME) @LOADED_IMAGES.register_module(OP_NAME) class ImageBlurMapper(Mapper): """Mapper to blur images."""
[docs] def __init__( self, p: float = 0.2, blur_type: str = "gaussian", radius: float = 2, save_dir: str = None, *args, **kwargs ): """ Initialization method. :param p: Probability of the image being blurred. :param blur_type: Type of blur kernel, including ['mean', 'box', 'gaussian']. :param radius: Radius of blur kernel. :param save_dir: The directory where generated image files will be stored. If not specified, outputs will be saved in the same directory as their corresponding input files. This path can alternatively be defined by setting the `DJ_PRODUCED_DATA_DIR` environment variable. :param args: extra args :param kwargs: extra args """ super().__init__(*args, **kwargs) self._init_parameters = self.remove_extra_parameters(locals()) self._init_parameters.pop("save_dir", None) if blur_type not in ["mean", "box", "gaussian"]: raise ValueError( f"Blur_type [{blur_type}] is not supported. " f'Can only be one of ["mean", "box", "gaussian"]. ' ) if radius < 0: raise ValueError("Radius must be >= 0. ") self.p = p from PIL import ImageFilter if blur_type == "mean": self.blur = ImageFilter.BLUR elif blur_type == "box": self.blur = ImageFilter.BoxBlur(radius) else: self.blur = ImageFilter.GaussianBlur(radius) self.save_dir = save_dir
[docs] def process_single(self, sample, context=False): # there is no image in this sample if self.image_key not in sample or not sample[self.image_key]: sample[Fields.source_file] = [] return sample if Fields.source_file not in sample or not sample[Fields.source_file]: sample[Fields.source_file] = sample[self.image_key] # load images loaded_image_keys = sample[self.image_key] sample, images = load_data_with_context( sample, context, loaded_image_keys, load_image, mm_bytes_key=self.image_bytes_key ) processed = {} for image_key in loaded_image_keys: if image_key in processed: continue if self.p < np.random.rand(): processed[image_key] = image_key else: blured_image_key = transfer_filename(image_key, OP_NAME, self.save_dir, **self._init_parameters) if blured_image_key != image_key: # the image_key is a valid local path, we can update it if not os.path.exists(blured_image_key) or blured_image_key not in images: blured_image = images[image_key].convert("RGB").filter(self.blur) images[blured_image_key] = blured_image blured_image.save(blured_image_key) if context: # update context sample[Fields.context][blured_image_key] = blured_image processed[image_key] = blured_image_key else: blured_image = images[image_key].convert("RGB").filter(self.blur) images[image_key] = blured_image processed[image_key] = image_key if context: # update context sample[Fields.context][image_key] = blured_image # when the file is modified, its source file needs to be updated. for i, value in enumerate(loaded_image_keys): if sample[Fields.source_file][i] != value: if processed[value] != value: sample[Fields.source_file][i] = value if self.image_bytes_key in sample and i < len(sample[self.image_bytes_key]): sample[self.image_bytes_key][i] = images[processed[value]].tobytes() sample[self.image_key] = [processed[key] for key in loaded_image_keys] return sample