data_juicer.core.executor

class data_juicer.core.executor.ExecutorBase(cfg: Namespace | None = None)[源代码]

基类:ABC

abstractmethod __init__(cfg: Namespace | None = None)[源代码]
abstractmethod run(load_data_np: Annotated[int, Gt(gt=0)] | None = None, skip_return=False)[源代码]

Abstract method for ExecutorBase.run

class data_juicer.core.executor.ExecutorFactory[源代码]

基类:object

static create_executor(executor_type: str)[源代码]
class data_juicer.core.executor.DefaultExecutor(cfg: Namespace | None = None)[源代码]

基类:ExecutorBase

This Executor class is used to process a specific dataset.

It will load the dataset and unify the format, then apply all the ops in the config file in order and generate a processed dataset.

__init__(cfg: Namespace | None = None)[源代码]

Initialization method.

参数:

cfg -- optional jsonargparse Namespace.

run(dataset: Dataset | NestedDataset = None, load_data_np: Annotated[int, Gt(gt=0)] | None = None, skip_export: bool = False, skip_return: bool = False)[源代码]

Running the dataset process pipeline.

参数:
  • dataset -- a Dataset object to be executed.

  • load_data_np -- number of workers when loading the dataset.

  • skip_export -- whether export the results into disk

  • skip_return -- skip return for API called.

返回:

processed dataset.

sample_data(dataset_to_sample: Dataset = None, load_data_np=None, sample_ratio: float = 1.0, sample_algo: str = 'uniform', **kwargs)[源代码]

Sample a subset from the given dataset. TODO add support other than LocalExecutor

参数:
  • dataset_to_sample -- Dataset to sample from. If None, will use the formatter linked by the executor. Default is None.

  • load_data_np -- number of workers when loading the dataset.

  • sample_ratio -- The ratio of the sample size to the original dataset size. Default is 1.0 (no sampling).

  • sample_algo -- Sampling algorithm to use. Options are "uniform", "frequency_specified_field_selector", or "topk_specified_field_selector". Default is "uniform".

返回:

A sampled Dataset.