Source code for trinity.common.workflows.workflow

# -*- coding: utf-8 -*-
"""Base Workflow Class"""

from __future__ import annotations

from abc import ABC, abstractmethod
from dataclasses import asdict, dataclass, field
from typing import Any, List, Optional, Type, Union

import openai

from trinity.common.config import FormatConfig, GenerationConfig
from trinity.common.experience import Experience
from trinity.common.models.model import ModelWrapper
from trinity.common.rewards.math_reward import MathRewardFn
from trinity.common.rewards.reward_fn import RewardFn
from trinity.utils.log import get_logger
from trinity.utils.registry import Registry

logger = get_logger(__name__)


WORKFLOWS = Registry("workflows")


[docs] @dataclass class Task(dict): """A Task class that defines a task and its associated reward function / workflow.""" workflow: Type[Workflow] repeat_times: Optional[int] = None format_args: FormatConfig = field(default_factory=FormatConfig) rollout_args: GenerationConfig = field(default_factory=GenerationConfig) workflow_args: dict = field(default_factory=dict) reward_fn_args: dict = field(default_factory=dict) is_eval: bool = False reward_fn: Optional[Type[RewardFn]] = None raw_task: Optional[dict] = None # The raw data sample # automatically assigned ids batch_id: Union[int, str] = 0 task_id: Union[int, str] = 0
[docs] def to_workflow( self, model: Any, auxiliary_models: Optional[List[openai.OpenAI]] = None ) -> Workflow: """Convert the task to a workflow. Args: model (ModelWrapper): The rollout model for the workflow. auxiliary_models (List[openai.OpenAI]): The auxiliary models for the workflow. Note: `model_path` attribute is added to the `auxiliary_models` for use within the workflow. Returns: Workflow: The generated workflow object. """ return self.workflow( model=model, task=self, auxiliary_models=auxiliary_models, )
# Deprecated property, will be removed in the future @property def task_desc(self) -> Union[str, None]: prompt_key = self.format_args.prompt_key return self.raw_task[prompt_key] if prompt_key in self.raw_task else None # type: ignore # Deprecated property, will be removed in the future @property def truth(self) -> Union[str, None]: response_key = self.format_args.response_key return self.raw_task[response_key] if response_key in self.raw_task else None # type: ignore
[docs] def to_dict(self) -> dict: return self.raw_task # type: ignore
[docs] class Workflow(ABC): """The base workflow class. A workflow is a runnable object which generates a list of experiences. """
[docs] def __init__( self, *, task: Task, model: ModelWrapper, auxiliary_models: Optional[List[openai.OpenAI]] = None, ): self.task = task self.model = model self.auxiliary_models = auxiliary_models self.run_id_base = 0
@property def resettable(self): return False @property def repeatable(self): """A workflow is repeatable if it can be run multiple times within the run() method.""" return True @property def rollout_args(self): return asdict(self.task.rollout_args)
[docs] def reset(self, task: Task): """Reset the workflow.""" raise NotImplementedError
[docs] def set_repeat_times(self, repeat_times: int, run_id_base: int) -> None: """ Set the number of times to repeat the workflow. Args: repeat_times (int): number of times to repeat the workflow (if repeatable). run_id_base (int): base run_id for setting run_id in experiences. """ raise NotImplementedError( "set_repeat_times() must be implemented for a repeatable workflow." )
[docs] @abstractmethod def run(self) -> List[Experience]: """Run workflow and return a list of experiences.""" raise NotImplementedError
[docs] class MultiTurnWorkflow(Workflow): """ The base workflow class for concatenated multi-turn tasks. """
[docs] def __init__( self, *, task: Task, model: ModelWrapper, auxiliary_models: Optional[List[openai.OpenAI]] = None, ): super().__init__( task=task, model=model, auxiliary_models=auxiliary_models, )
[docs] def set_repeat_times(self, repeat_times, run_id_base): self.repeat_times = repeat_times self.run_id_base = run_id_base
[docs] @abstractmethod def run(self) -> List[Experience]: """Run workflow and return a list of experiences."""
[docs] def process_messages_to_experience(self, messages, reward, info={}) -> Experience: converted_experience = self.model.convert_messages_to_experience(messages) tokens = converted_experience.tokens log_probs = converted_experience.logprobs assert converted_experience.action_mask is not None generation_mask = converted_experience.action_mask log_probs = log_probs * generation_mask assert tokens.shape == log_probs.shape metrics = {} for k, v in info.items(): if isinstance(v, float) or isinstance(v, int): metrics[k] = float(v) experience = Experience( tokens=tokens, action_mask=generation_mask, reward=reward, logprobs=log_probs, info=info, metrics=metrics, ) return experience
[docs] @WORKFLOWS.register_module("simple_workflow") class SimpleWorkflow(Workflow): """A workflow for simple single-round task."""
[docs] def __init__( self, *, task: Task, model: ModelWrapper, auxiliary_models: Optional[List[openai.OpenAI]] = None, ): self.reset(task) super().__init__( task=task, model=model, auxiliary_models=auxiliary_models, )
@property def resettable(self): return True
[docs] def reset(self, task: Task): self.format_args = task.format_args self.system_prompt = task.format_args.system_prompt self.reply_prefix = task.format_args.reply_prefix self.reward_fn_args = task.reward_fn_args self.raw_task = task.raw_task self.task_desc = task.task_desc self.truth = task.truth reward_fn = task.reward_fn if isinstance(reward_fn, type) and issubclass(reward_fn, RewardFn): self.reward_fn: RewardFn = reward_fn(**self.reward_fn_args) else: raise ValueError("`reward_fn` must be a subclass of `RewardFn`")
[docs] def set_repeat_times(self, repeat_times, run_id_base): self.repeat_times = repeat_times self.task.rollout_args.n = repeat_times self.run_id_base = run_id_base
[docs] def format_messages(self): """Format messages for the instruct model.""" messages = [] if self.system_prompt: messages.append({"role": "system", "content": self.system_prompt}) messages.append({"role": "user", "content": self.task_desc}) if self.reply_prefix: messages.append({"role": "assistant", "content": self.reply_prefix}) return messages
[docs] def run(self) -> List[Experience]: # TODO: Optimize the generate function messages = self.format_messages() logger.debug("start chat") responses = self.model.chat(messages, **self.rollout_args) for i, response in enumerate(responses): reward_dict = self.reward_fn( # type: ignore [misc] response=response.response_text, # type: ignore [arg-type] truth=self.truth, ) if response.metrics is None: response.metrics = {} response.metrics.update(reward_dict) reward = sum(reward_dict.values()) response.reward = reward response.eid.run = i + self.run_id_base logger.debug( f"self.task_desc: {self.task_desc}, messages: {messages}, response: {response.response_text}, reward: {reward}" ) return responses
[docs] @WORKFLOWS.register_module("math_workflow") class MathWorkflow(SimpleWorkflow): """A workflow for math tasks as introduced in DeepSeek-R1."""
[docs] def __init__( self, *, task: Task, model: ModelWrapper, auxiliary_models: Optional[List[openai.OpenAI]] = None, ): self.reset(task) super().__init__( task=task, model=model, auxiliary_models=auxiliary_models, )
[docs] def reset(self, task: Task): if task.reward_fn is None: task.reward_fn = MathRewardFn if task.reward_fn == MathRewardFn and task.format_args.system_prompt is None: task.format_args.system_prompt = """A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. """ # call the SimpleWorkflow.reset super().reset(task)