Source code for trinity.explorer.scheduler

"""Scheduler for rollout tasks."""

import asyncio
import re
import time
import traceback
from collections import defaultdict, deque
from dataclasses import dataclass, replace
from typing import Dict, List, Optional, Tuple, Union

import ray

from trinity.common.config import Config
from trinity.common.experience import Experience
from trinity.common.models import InferenceModel
from trinity.common.workflows import Task
from trinity.explorer.workflow_runner import Status, WorkflowRunner
from trinity.utils.log import get_logger


[docs] @dataclass class TaskWrapper: """A wrapper for a task.""" task: Task batch_id: Union[int, str] run_id_base: int = 0 repeat_times: int = 1
[docs] class RunnerWrapper: """A wrapper for a WorkflowRunner"""
[docs] def __init__( self, runner_id: int, rollout_model: InferenceModel, auxiliary_models: List[InferenceModel], config: Config, ): self.logger = get_logger(__name__) self.runner_id = runner_id self.rollout_model = rollout_model self.auxiliary_models = auxiliary_models self.config = config self.retry_times = config.explorer.max_retry_times self.timeout = config.explorer.max_timeout self.namespace = ray.get_runtime_context().namespace self.runner = self._create_runner()
def _create_runner(self): return ( ray.remote(WorkflowRunner) .options( namespace=self.namespace, scheduling_strategy="SPREAD", runtime_env={ "env_vars": self.config.explorer.env_vars, }, ) .remote(self.config, self.rollout_model, self.auxiliary_models, self.runner_id) )
[docs] async def run_with_retry(self, task: TaskWrapper) -> Tuple[Status, List, int]: """ Returns: `Status`: The return status of the task. `List`: The experiences generated by the task. `int`: The runner_id of current runner. """ last_exception_msg = None await self.runner.__ray_ready__.remote() start_time = time.time() status = Status(ok=False, metric=dict()) exps = [] try: for attempt in range(self.retry_times + 1): try: status, exps = await asyncio.wait_for( self.runner.run_task.remote(task.task, task.repeat_times, task.run_id_base), self.timeout, ) if status.ok: break else: self.logger.error(status.message) except asyncio.TimeoutError: last_exception_msg = f"Timeout when running task of batch {task.batch_id} at runner {self.runner_id}: {task.task}" self.logger.error(last_exception_msg) status = Status(ok=False, metric=dict(), message=last_exception_msg) except Exception: last_exception_msg = traceback.format_exc() self.logger.warning( f"Task execution attempt {attempt + 1} failed:\n{last_exception_msg}" ) status = Status(ok=False, metric=dict(), message=last_exception_msg) finally: end_time = time.time() status.metric["task_run_time"] = end_time - start_time return status, exps, self.runner_id
[docs] def restart_runner(self): old_runner = self.runner self.runner = self._create_runner() try: ray.kill(old_runner) except Exception: pass
[docs] def sort_batch_id(batch_id: Union[int, str]): """Priority of batch_id""" # TODO: avoid sort the batch_id every time if isinstance(batch_id, int): return (batch_id, 0) else: match = re.match(r"^(\d+)", batch_id) if match: num = int(match.group(1)) return (num, 1) else: return (float("inf"), 1)
[docs] class Scheduler: """Scheduler for rollout tasks."""
[docs] def __init__( self, config: Config, rollout_model: List[InferenceModel], auxiliary_models: Optional[List[List[InferenceModel]]] = None, ): self.logger = get_logger(__name__) self.config = config self.rollout_model = rollout_model self.auxiliary_models = auxiliary_models or [] self.namespace = ray.get_runtime_context().namespace self.default_timeout = config.explorer.max_timeout * (config.explorer.max_retry_times + 1) self.max_retry_times = config.explorer.max_retry_times self.max_repeat_times = config.explorer.max_repeat_times_per_runner self.running = False self.runner_num = len(rollout_model) * config.explorer.runner_per_model self.runners: Dict[int, RunnerWrapper] = dict() self.idle_runners = set() # runner_id self.busy_runners = dict() # runner_id -> task self.pending_tasks: Dict[Union[int, str], deque] = defaultdict(deque) # batch_id -> tasks self.running_tasks: Dict[Union[int, str], set[asyncio.Future]] = defaultdict( set ) # batch_id -> futures self.running_task_map: Dict[asyncio.Future, TaskWrapper] = dict() # future -> task self.completed_tasks: Dict[ Union[int, str], deque[Tuple[Status, List[Experience]]] ] = defaultdict( deque ) # batch_id -> results self.scheduler_task: Optional[asyncio.Task] = None self.running = False self.total_scheduled = 0 self.total_completed = 0
def _create_runner( self, runner_id: int, ): runner = RunnerWrapper( runner_id=runner_id, rollout_model=self.rollout_model[runner_id % len(self.rollout_model)], auxiliary_models=[ self.auxiliary_models[j][runner_id % len(self.auxiliary_models[j])] for j in range(len(self.auxiliary_models)) ], config=self.config, ) self.runners[runner_id] = runner self.idle_runners.add(runner_id) def _restart_runner(self, runner_id: int): """Restart a runner.""" self.runners[runner_id].restart_runner() if runner_id in self.busy_runners: task = self.busy_runners.pop(runner_id) self.logger.warning( f"Runner {runner_id} failed to run task at batch_id {task.batch_id}: {task.task.raw_task}" ) self.idle_runners.add(runner_id) self.logger.info(f"Runner {runner_id} restarted.") async def _scheduler_loop(self) -> None: self.logger.info("Scheduler loop started.") while self.running: try: await self._schedule_pending_tasks() await asyncio.sleep(0.01) except Exception: self.logger.error(f"Error in scheduler loop:\n{traceback.format_exc()}") await asyncio.sleep(0.1) self.logger.info("Scheduler loop stopped.") async def _schedule_pending_tasks(self) -> None: if not self.idle_runners: return # TODO: Support more advanced scheduling strategies for batch_id in sorted(self.pending_tasks.keys(), key=sort_batch_id): task_queue = self.pending_tasks[batch_id] while task_queue and self.idle_runners: task = task_queue.pop() runner_id = self.idle_runners.pop() self.busy_runners[runner_id] = task future = asyncio.create_task(self.runners[runner_id].run_with_retry(task)) self.running_task_map[future] = task future.add_done_callback(self.task_done_callback) self.running_tasks[batch_id].add(future) if not task_queue: del self.pending_tasks[batch_id]
[docs] def task_done_callback(self, async_task: asyncio.Task): task = self.running_task_map.pop(async_task) if async_task.cancelled(): return elif async_task.exception(): self.logger.error(f"Task {task.task.task_id} failed: {async_task.exception()}") return else: status, exps, runner_id = async_task.result() self.completed_tasks[task.batch_id].appendleft((status, exps)) self.busy_runners.pop(runner_id) self.idle_runners.add(runner_id) self.logger.debug(f"Task completed (batch_id {task.batch_id}), success: {status.ok}") if task.batch_id in self.running_tasks: self.running_tasks[task.batch_id].remove(async_task) if not self.running_tasks[task.batch_id]: del self.running_tasks[task.batch_id]
def _clear_timeout_tasks(self, batch_id: Union[int, str]) -> None: if batch_id in self.pending_tasks: self.logger.info(f"Clear timeout pending tasks at batch_id {batch_id}.") del self.pending_tasks[batch_id] if batch_id in self.running_tasks: self.logger.info(f"Clear timeout running tasks at batch_id {batch_id}.") for future in self.running_tasks[batch_id]: future.cancel() del self.running_tasks[batch_id]
[docs] async def start(self) -> None: if self.running: return self.running = True for i in range(self.runner_num): self._create_runner(i) self.scheduler_task = asyncio.create_task(self._scheduler_loop()) for _, runner in self.runners.items(): await runner.runner.__ray_ready__.remote() self.logger.info(f"Starting Scheduler with {self.runner_num} runners")
[docs] async def stop(self) -> None: if not self.running: return self.running = False all_running_futures = [] for futures in self.running_tasks.values(): all_running_futures.extend(futures) if all_running_futures: self.logger.info(f"Waiting for {len(all_running_futures)} running tasks to complete...") await asyncio.gather(*all_running_futures, return_exceptions=True) if self.scheduler_task: self.scheduler_task.cancel() try: await self.scheduler_task except asyncio.CancelledError: pass self.logger.info("Scheduler stopped")
[docs] def schedule(self, tasks: List[Task], batch_id: Union[int, str]) -> None: """Schedule the provided tasks. Args: tasks (`List[Task]`): The tasks to schedule. batch_id (`Union[int, str]`): The id of provided tasks. It should be an integer or a string starting with an integer (e.g., 123, "123/my_task") """ if not tasks: return self._split_and_submit_tasks(tasks, batch_id=batch_id)
def _split_and_submit_tasks(self, tasks: List[Task], batch_id: Union[int, str]) -> None: for i, task in enumerate(tasks): assert task.repeat_times is not None, "Task repeat_times should not be None" if self.max_repeat_times is None: self.pending_tasks[batch_id].appendleft( TaskWrapper( task=replace(task, batch_id=batch_id, task_id=i), batch_id=batch_id, run_id_base=0, repeat_times=task.repeat_times, ) ) continue rest_repeat_times = task.repeat_times run_id_base = 0 while rest_repeat_times > 0: repeat_times = min(self.max_repeat_times, rest_repeat_times) task_wrapper = TaskWrapper( task=replace( task, batch_id=batch_id, task_id=i, rollout_args=replace( task.rollout_args, n=repeat_times ), # deprecated: use TaskWrapper.repeat_times ), batch_id=batch_id, run_id_base=run_id_base, repeat_times=repeat_times, ) run_id_base += repeat_times rest_repeat_times -= repeat_times self.pending_tasks[batch_id].appendleft(task_wrapper)
[docs] async def get_results( self, batch_id: Union[int, str], min_num: Optional[int] = None, timeout: Optional[float] = None, clear_timeout_tasks: bool = True, ) -> Tuple[List[Status], List[Experience]]: """Get the result of tasks at the specific batch_id. Args: batch_id (`Union[int, str]`): Only wait for tasks at this batch. min_num (`int`): The minimum number of tasks to wait for. If `None`, wait for all tasks at `batch_id`. timeout (`float`): The timeout for waiting for tasks to finish. If `None`, wait for default timeout. clear_timeout_tasks (`bool`): Whether to clear timeout tasks. """ timeout = timeout or self.default_timeout start_time = time.time() if min_num is None: min_num = sum( len(tasks) # type: ignore [misc] for tasks in ( self.pending_tasks.get(batch_id, []), self.running_tasks.get(batch_id, []), self.completed_tasks.get(batch_id, []), ) ) self.logger.debug(f"Waiting for {min_num} tasks to complete...") while time.time() - start_time <= timeout: completed_count = len(self.completed_tasks.get(batch_id, [])) if completed_count >= min_num: break await asyncio.sleep(0.1) if time.time() - start_time > timeout: self.logger.error(f"Timed out waiting for tasks to complete after {timeout} seconds") if clear_timeout_tasks: self._clear_timeout_tasks(batch_id=batch_id) for runner_id, task in list(self.busy_runners.items()): if task.batch_id == batch_id: self._restart_runner(runner_id) statuses = [] experiences = [] completed_queue = self.completed_tasks.get(batch_id, deque()) for _ in range(min_num): if completed_queue: status, exps = completed_queue.pop() statuses.append(status) if isinstance(exps, list): experiences.extend(exps) else: experiences.append(exps) if batch_id in self.completed_tasks and not self.completed_tasks[batch_id]: del self.completed_tasks[batch_id] completed_count = len(statuses) if completed_count < min_num: self.logger.warning( f"Timeout reached, only {completed_count}/{min_num} tasks completed" ) return statuses, experiences
[docs] def has_step(self, batch_id: Union[int, str]) -> bool: return ( batch_id in self.completed_tasks or batch_id in self.pending_tasks or batch_id in self.running_tasks )
[docs] async def wait_all( self, timeout: Optional[float] = None, clear_timeout_tasks: bool = True ) -> None: """Wait for all tasks to complete without poping results. If timeout reached, raise TimeoutError. Args: timeout (`float`): timeout in seconds. Raise `TimeoutError` when no new tasks is completed within timeout. clear_timeout_tasks (`bool`): Whether to clear timeout tasks. """ timeout = timeout or self.default_timeout start_time = time.time() self.logger.debug("Waiting for all tasks to complete...") last_completed_count = 0 while time.time() - start_time < timeout: has_pending = bool(self.pending_tasks) has_running = bool(self.running_tasks) if not has_pending and not has_running: self.logger.debug("All tasks completed successfully") return completed_count = sum(len(tasks) for tasks in self.completed_tasks.values()) if completed_count != last_completed_count: # flush timeout when new tasks are completed start_time = time.time() last_completed_count = completed_count await asyncio.sleep(0.1) pending_count = sum(len(tasks) for tasks in self.pending_tasks.values()) running_count = sum(len(futures) for futures in self.running_tasks.values()) error_msg = f"Timeout after {timeout} seconds. Still have {pending_count} pending tasks and {running_count} running tasks." self.logger.error(error_msg) if clear_timeout_tasks: for batch_id in self.pending_tasks.keys() | self.running_tasks.keys(): self._clear_timeout_tasks(batch_id) busy_runner_ids = list(self.busy_runners.keys()) for runner_id in busy_runner_ids: self._restart_runner(runner_id) raise TimeoutError(error_msg)